K. Fair - Homework #3 EDRS 811

ANOVA

Use the Weightloss dataset. For each of the following, write your answer in <u>APA format</u> and include the correct **essential** output with your answer. Make sure you test the appropriate assumptions for each test (examine normality).

1. For each of your continuous variables, identity any outliers and delete them if appropriate.

2. Describe your sample in terms of age, gender, and ethnicity.

There were a total of 54 participants: 29 males and 24 females. Participants ranged in age from 28 to 45 years with a mean of 36.54 years (SD=5.11997). The ethnicity of the participants included 27 African Americans (50.9%) and 25 Caucasians (49.1%). One outlier with a recorded age of 2 years was removed.

3. Test the hypothesis that satisfaction with treatment differed between clinics.

An independent samples t test was conducted to determine if the average level of satisfaction with treatment was different between clinic a and clinic b. The assumption of normality was tested and the review of the SW test for normality indicated a significant level of non-normality for clinic a (SW = .885, df = 27, p = .006). Skewness, (-.518), kurtosis (-1.070), and observed values on the Q-Q plot suggested normality of level of satisfaction with clinic a was a reasonable assumption. Review of the SW test for normality for clinic b (SW = .925, df = 26, p = .050) and skewness (.024) and kurtosis (-1.017) statistics suggested that normality of level of satisfaction with clinic b was a reasonable assumption. The box plot suggested some non-normality in the distribution in the satisfaction with treatment with clinic a with a smaller range of the distribution in Q3 and Q4, and some non-normality in the distribution of satisfaction with treatment in clinic b with a smaller range of the distribution in Q1 and Q2. There were no outliers for either clinic 1 or clinic 2. According to Levene's test, the homogeneity of variance assumption was satisfied (F(51) = 1.158, p=.285)

The independent t test indicated that the average level of satisfaction was not significantly different for clinic a and clinic b (t(51)=1.859, p=.069). Thus the null hypothesis that the average level of satisfaction between clinics was accepted.

4. Answer the question: Do the four treatments results in the same amount of weight lost?

A one-way ANOVA was conducted to determine if the mean amount of weight lost by participants differed by treatment. The assumption of normality was tested and met via examination of the residuals. Review of the S-W test for normality (SW = .961, df = 53, p = .081) and skewness (.289) and kurtosis (-.800) statistics suggested that normality was a reasonable assumption. The boxplot suggested a relatively normal distributional shape

Erin Peters-Burton 11/15/2015 5:41 PM

Comment [2]: Good

Erin Peters-Burton 11/15/2015 5:41 PM Comment [3]: Failed to be rejected

Erin Peters-Burton 11/15/2015 7:01 PM Comment [1]: 97% (with no outliers) of the residuals. A visual review of the Q-Q plot suggested normality was reasonable. The assumption of independence was met by the random assignment of individuals to groups. According to Levene's test, the homogeneity of variance assumption as satisfied (F(3, 49) = 1.465, p = .236).

The one-way ANOVA indicated that there was a statistically significant difference (F = 27.213, df = 3, 49, p = .000) between the amount of weight lost between the four treatment groups, the effect size is large ($\eta^2 = .625$; suggesting about 62% of the variance of amount of weight lost is due to the difference in treatments), the observed power is strong (1.00). The means and standard deviations of the treatment groups were as follows: 6.5000 (SD = 2.24465) for the placebo group, 9.2857 (SD = 3.04905) for the hypnosis group, 6.0000 (SD - 2.04124) for the relaxation group, and 14.000 (SD = 2.44949) for the cognitive behavioral therapy group.

A post hoc Tukey test was conducted on all possible pairwise contrasts. The following pairs of treatment groups were found to be significantly different (p < .05): hypnosis (M = 9.2857, SD = 3.04905) and placebo (M = 6.5000, SD = 2.24465), hypnosis and relaxation (M = 6.0000, SD = 2.04124), hypnosis and cognitive behavioral therapy (M = 14, SD = 2.44949), placebo and cognitive behavioral therapy, and relaxation and cognitive behavioral therapy. In other words, the hypnosis group lost statistically significantly more weight than the placebo and relaxation groups; and the cognitive behavioral therapy group lost statistically significantly more weight than the hypnosis, the placebo, and the relaxation groups.

5. Answer the question: Do the four treatment groups result in the same amount of eating control?

A one-way ANOVA was conducted to determine if the mean score of the post-treatment eating control by participants differed by treatment. The assumption of normality was tested and met via examination of the residuals. Review of the S-W test for normality (SW = .978, df = 53, p = .248) and skewness (.348) and kurtosis (.025) statistics suggested that normality was a reasonable assumption. The boxplot suggested a relatively normal distributional shape (with no outliers) of the residuals. The Q-Q plot suggested normality was reasonable. The assumption of independence was met by the random assignment of individuals to groups. According to Levene's test, the homogeneity of variance assumption as satisfied (F(3, 49) = .922, p = .437).

The one-way ANOVA indicated that there was a statistically significant difference (F = 10.486, df = 3, 49, p = .000) between the amount of eating control between the four treatment groups. The effect size is medium ($\eta^2 = .391$; suggesting about 39% of the variance of amount of eating control is due to the difference in treatments), the observed power is strong (.998). The means and standard deviations of the treatment groups were as follows: 6.7143 (SD = 2.99817) for the placebo group, 9.2143 (SD = 3.26234) for the hypnosis group, 7.0000 (SD = 2.48328) for the relaxation group, and 12.1667 (SD = 2.03753) for the cognitive behavioral therapy group.

Erin Peters-Burton 11/15/2015 5:42 PM Comment [4]: Great! A post hoc Tukey test was conducted on all possible pairwise contrasts. The following pairs of treatment groups were found to be significantly different (p < .05): cognitive behavioral therapy (M = 12.1667, SD = 2.03753) and placebo (M = 6.7143, SD = 2.99817), cognitive behavioral therapy and hypnosis (M = 9.2143, SD = 3.26234), and cognitive behavioral therapy and relaxation (M = 7.0000, SD = 2.48328). In other words the cognitive behavioral therapy group have a statistically significantly higher level of eating control than the placebo, the hypnosis, and the relaxation groups.

Chi-square

- Use the Cheating data set to determine if the math grade distribution is a normal distribution Use 5% A's, 10% A/B's, 12% B's, 15% B/C's, 16% C's, 15% C/D's 12% D's, 10% D/F's and 5% F's.
 - **a.** Is this a hypothesis of no preference or of no difference? How do you know? The hypothesis is no difference from the given expected percentages. No preference would indicate the same proportion across categories.
 - **b.** What is the expected frequency for "mostly A's"? How was it calculated? The expected frequency for "mostly As" is 6.1. It is the expected proportion (5%) times the number of participants (123)

c. Is the grade distribution normal?

Chi-square is 275, p = .000, so the grade distribution does not match the normal distribution in the question.

or ...

The grade distribution does not appear to be normal. Review of the S-W test for normality (SW = .876, df = 123, p = .000) showed a significant amount of non-normality. Though skewness (.714) and kurtosis (-.045) were within the normal range, a visual review of the histogram and box plot showed the data was positively skewed with one outlier, which was not removed for this test since normality is not an assumption for the chi-square goodness of fit.

d. What is the df for this test? How was it calculated?

df for this test is 8 or the number of categories (9) - 1.

e. Write up the results in APA format.

A chi-square goodness-of-fit test was conducted to determine if the sample proportions of math grades were the same as a normal distribution. The test was conducted using an alpha of .05. The null hypothesis was that the grade proportions would be as follows: .05 A, .10A/B, .12 B, .15 B/C, .16 C, .15 C/D, .12 D, .10 D/F's and .05 F. The assumption of an expected frequency of at least 5 per cell was met. The assumption of independence was met via random selection.

As shown in the attached table, there was a statistically significant difference between the proportions of sample grades from the normal distribution ($\chi^2 = 275.005$, df - 8, p

Erin Peters-Burton 11/15/2015 5:42 PM Comment [5]: Well done!!

Erin Peters-Burton 11/15/2015 6:19 PM Comment [6]: Calculate the residuals (-3) = .000). Thus the null hypothesis that the proportions of sample grades were the same as expected in a normal distribution was rejected at the .05 level of significance. The effect size ($\chi^2/[N(J-1)]$) was small to medium at .2795 using Cohen's guide.

- 2. Use the Cheating data set to determine if there is a relationship between GPA and grade level.
 - a. What is the expected frequency for 9th grade /4.0 calculated? (show your work) Total count of students with a 4.0 (20) times the total marginal percent of 9th graders (63/121 = 52.1%) gives a total expected count of 10.4.
 - **b.** Are GPA and grade level related? Not significant at the 5% level
 - c. What is the df for this test? How was it calculated? df = 5, (gpa categories -1)(grade categories -1) = (6-1)(2-1)
 - d. Write up the results in APA format.

A chi-square test of association was conducted to determine if there was a relationship between GPA and grade level. The test was conducted using an alpha of .05. It was hypothesized that there was an association between the two variables. The assumption of an expected frequency of at least 5 per cell was not met with 2 cells that had an expected count of less than 5. The assumption of independence was met via random selection.

The chi-square test ($\chi^2 = 11.046$, df - 5, p = .050) showed no significant relationship between GPA and grade level, thus the null hypothesis that there is no relationship was not rejected.

Erin Peters-Burton 11/15/2015 6:19 PM Comment [7]: Good!

Correlation

 Use the cheating data set to determine the relationship between Academic Self Efficacy, Mastery Goal Orientation (focus on learning), and Focus on Demonstrating Ability. (Include cross products and covariance). Participant 60 excluded as an outlier in self-efficacy Participants 79 and 106 excluded as outliers for Mastery Orientation

self-efficacy and mastery r = .539, n = 120, p = .000, cov = .37702mastery and demonstrating ability r = .294, n = 120, p = .001, cov = .25411self-efficacy and demonstrating ability r = .167, n = 120, p = .069, cov = .11681 Erin Peters-Burton 11/15/2015 6:38 PM Comment [8]: Great! a. Show how the calculation for the Pearson r between Self-Efficacy and Mastery Orientation was obtained. (You will need to use SPSS to calculate some descriptive statistics). Created column (Self-Efficacy – 3.7879)(Focus on learning – 3.7663). 44.9 (sum of column)/ (120-1) = .3773109 (cov) Divide this by the product of the stand deviations: .3773109/ (.83789*.83481) = .53941 (Pearson r)

b. Find these correlations (from a) for each gender. Focus on demonstrating, 1 outlier male

Self efficacy, 2 outliers female, Mastery, 1 outlier female

Male:

self-efficacy and mastery r = .619, n = 49, p = .000, cov = .66105mastery and demonstrating ability r = .208, n = 49, p = .151, cov = .17761self-efficacy and demonstrating ability r = .139, n = 49, p = .34, cov = .13274

Female:

self-efficacy and mastery r = .482, n = 71, p = .000, cov = .24707 mastery and demonstrating ability r = .361, n = 71, p = .002, cov = .26922 self-efficacy and demonstrating ability r = .211, n = 71, p = .078, cov = .09484

c. Write 3-4 sentences to explain your findings for the full group and by gender.

A Pearson correlation was computed to determine if there is a relationship between Academic Self Efficacy, Mastery Goal Orientation, and Focus on Demonstrating Ability. For the full group a moderate positive relationship was found between Self-Efficacy and Mastery Goal Orientation (r = .539, n = 120, p = .000), a weak positive relationship was found between Mastery Goal Orientation and Focus on Demonstrating Ability (r = .294, n = 120, p = .001), and a weak positive relationship was found between Self-Efficacy and Mastery Goal Orientation (r = .167, n = 120, p = .069). The null was rejected at the alpha level of .05 for the relationship between Self-Efficacy and Mastery Goal Orientation, and the relationship between Mastery Goal Orientation and Focus on Demonstrating Ability.

For the male subgroup a moderate positive relationship was found between Self-Efficacy and Mastery Goal Orientation (r = .619, n = 49, p = .000), a weak positive relationship was found between Mastery Goal Orientation and Focus on Demonstrating Ability (r = .208, n = 49, p = .151), and a weak positive relationship was found between Self-Efficacy and Mastery Goal Orientation (r = .139, n = 49, p = .34). The null was rejected at the alpha level of .05 for the relationship between Self-Efficacy and Mastery Goal Orientation.

For the female subgroup a moderate positive relationship was found between Self-Efficacy and Mastery Goal Orientation (r = .482, n = 71, p = .000), a weak positive relationship was found between Mastery Goal Orientation and Focus on Demonstrating Ability (r = .361, n = 71, p = .002), and a weak positive relationship was found between Self-Efficacy and Mastery Goal Orientation (r = .211, n = 71, p = .078). The null was rejected at the alpha level of .05 for the relationship between Self-Efficacy and Mastery Goal Orientation, and the relationship between Mastery Goal Orientation and Focus on Demonstrating Ability.

ANOVA-post-hocs & planned comparisons

Using the cheating data set, run the appropriate analysis and write-up your results in APA format for each of the following:

1 Run a one-way ANOVA with an appropriate post-hoc test to examine the following the research question: Does self-efficacy differ between those students who have mostly A's & mostly A's & B's vs. Mostly B's & Mostly B's & C's vs. students in all other grade categories in math? (hint: you will need to recode the math variable).

A one-way ANOVA was conducted to determine if the mean level of self-efficacy differed between students whose math grades are mostly A and A/B vs. mostly B and B/C, vs. students in all other grade categories. The assumption of normality was tested and met via examination of the residuals. Though the S-W test for normality indicates a significant non-normality (SW = .967, df = 123, p = .004), skewness (-.362), and kurtosos (-.541), and a visual review of the Q-Q plot and boxplot suggest that it is reasonable to assume that the population is normally distributed. According to Levene's test, the homogeneity of variance assumption was satisfied [F(2, 120) = .256, p = .774). The assumption of independence was met by the random assignment of participants.

The one-way ANOVA is statically significant (F = 18.976, df = 2, 120, p = .000), the effect size is small ($\eta^2 = .240$; suggesting about 24% of the variance of self-efficacy is due to the difference in grade levels), and observed power is strong (1.000). The means and standard deviations of the grade levels were as follows: for group A, A/B 4.2275 (*SD* = .72113); for group B, B/C 3.5580 (*SD* = .75736); and for group C-F 3.1714 (*SD* = .87891). The means and profile plot suggest that as grade levels decreased, there was a corresponding reduction in the measure of self-efficacy.

Erin Peters-Burton 11/15/2015 6:38 PM Comment [9]: Good! A post hoc Tukey test was conducted on all possible pairwise contrasts. The following pairs of treatment groups were found to be significantly different (p < .05): A, A/B (M = 4.2275, SD = .7213) and B, B/C (M = 3.5580, SD = .75736); and A, A/B and C-F (M = 3.1714, SD = .87891). In other words, the level of self-efficacy was significantly higher for the A, A/B group than the B, B/C and the C-F groups.

A priori planned contrasts also indicate that the following sets of treatment groups were significantly different (p < .05): the combined B, B/C and C-F groups vs. the A,A/B group (p = 000); the B, B/C vs. the C-F group (p = .041); the A, A/B vs. the B, B/C group (p = .000); and the A, A/B group vs. the C-F group (p = .000).

*How do we know when it is not reasonable to assume?

2. Examine the variables in the cheating data set and write a research question that can be answered with a planned comparison in a one-way ANOVA (you may recode variables). Carry out this analysis and present your results in APA format.

Does the likelihood of cheating differ between those students whose GPAs are 4.0 vs. 3.5-3.9 vs. 3.0-3.4 vs. 2.5-2.9 vs. below 2.5.

A one-way ANOVA was conducted to determine if the likelihood of cheating differed between students whose GPAs were 4.0 vs. 3.5-3.9 vs. 3.0-3.4 vs. 2.5-2.9 vs. below 2.5. The assumption of normality was tested and met via examination of the residuals. Review of the S-W test for normality (SW = .967, df = 120, p = .005), skewness (-.002), and kurtosos (-1.014), and a visual review of the Q-Q plot and boxplot suggest that it is reasonable to assume that the population is normally distributed. According to Levene's test, the homogeneity of variance assumption was satisfied [F(4, 115) = .763, p = .551). The assumption of independence was met by the random assignment of participants. One outlier was removed.

The one-way ANOVA is not statically significant (F = .872, df = 4, 118, p = .483). The means and standard deviations of the likelihood of cheating by GPA were as follows: for 4.0, M = 3.6 (SD = 1.55259); for 3.5-3.9, M = 3.8056 (SD = 1.37984); for 3.0-3.4, M = 3.7593 (SD = 1.46347); for 2.5-2.9, M = 3.4048; for below 2.5, M = 4.2500 (SD = 1.30384).

Because of the unequal number of participants in each group, a post hoc Games-Howell test was conducted on all possible pairwise contrasts. No significant difference (p < .05): was found between pairs of GPA groups.

A priori planned contrasts found no significant difference between students who's GPAs were between 3.5-4.0 vs. below 3.5; no significant difference between students who's GPAs were between 3.0-4.0 vs. below 3.0. There was a significant difference between students who's GPAs were between 2.5-4.0 vs. below 2.5 (p = .000). In other words, the likelihood of cheating score was significantly higher for students who's GPAs were below 2.5 than students who's GPAs were 2.5 or above.

Erin Peters-Burton 11/15/2015 7:00 PM Comment [10]: When you do investigations, you will know the design better than you do in this class.

Erin Peters-Burton 11/15/2015 7:00 PM Comment [11]: Good question

Erin Peters-Burton 11/15/2015 7:00 PM Comment [12]: Nailed it!

Erin Peters-Burton 11/15/2015 7:00 PM Comment [13]: Thanks for putting this as an appendix!

Supporting Docs Table of Contents

ANOVA 2 Descriptive Statistics.	
All Data	
2 year old removed	
Gender and Ethnicity	
ANOVA 4	
ANOVA 5	
Chi-square 1	
Chi-square 1	
Chi-Square 2	
Correlation	
1	
Correlation 1a	
Correlation 1b.	
ANOVA-post-hoc	
1	
2	

ANOVA 2 Descriptive Statistics.

All Data Frequencies

Statistics						
		Age in years	Gender	ethnicity		
Ν	Valid	54	54	54		
	Missing	0	0	0		
Mean		35.9074	1.4630	1.4815		
Std. Erro	r of Mean	.94105	.06849	.06863		
Median		35.0000	1.0000	1.0000		
Mode		35.00	1.00	1.00		
Std. Dev	iation	6.91531	.50331	.50435		
Variance		47.821	.253	.254		
Skewnes	S	-2.038	.153	.076		
Std. Erro	r of Skewness	.325	.325	.325		
Kurtosis		9.688	-2.054	-2.072		
Std. Erro	r of Kurtosis	.639	.639	.639		
Range		43.00	1.00	1.00		

Minimum		2.00	1.00	1.00
Maximum		45.00	2.00	2.00
Sum		1939.00	79.00	80.00
Percentiles	25	32.0000	1.0000	1.0000
	50	35.0000	1.0000	1.0000
	75	41.2500	2.0000	2.0000

Frequency Table

	Age in years							
		Frequency	Percent	Valid Percent	Cumulative Percent			
Valid	2.00	1	1.9	1.9	1.9			
	28.00	1	1.9	1.9	3.7			
	29.00	1	1.9	1.9	5.6			
	30.00	4	7.4	7.4	13.0			
	31.00	3	5.6	5.6	18.5			
	32.00	5	9.3	9.3	27.8			
	33.00	6	11.1	11.1	38.9			
	34.00	1	1.9	1.9	40.7			
	35.00	7	13.0	13.0	53.7			
	36.00	2	3.7	3.7	57.4			
	37.00	3	5.6	5.6	63.0			
	38.00	1	1.9	1.9	64.8			
	39.00	1	1.9	1.9	66.7			
	40.00	4	7.4	7.4	74.1			
	41.00	1	1.9	1.9	75.9			
	42.00	1	1.9	1.9	77.8			
	43.00	5	9.3	9.3	87.0			
	44.00	3	5.6	5.6	92.6			
	45.00	4	7.4	7.4	100.0			
	Total	54	100.0	100.0				

Gender

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	male	29	53.7	53.7	53.7
	female	25	46.3	46.3	100.0
	Total	54	100.0	100.0	

	etnicity							
					Cumulative			
		Frequency	Percent	Valid Percent	Percent			
Valid	African_Americna	28	51.9	51.9	51.9			
	Caucasian	26	48.1	48.1	100.0			
	Total	54	100.0	100.0				

2 year old removed

Explore

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Gender	53	100.0%	0	0.0%	53	100.0%
Age in years	53	100.0%	0	0.0%	53	100.0%
etnicity	53	100.0%	0	0.0%	53	100.0%

	Descriptives							
			Statistic	Std. Error				
Gender	Mean		1.4528	.06903				
	95% Confidence Interval for	Lower Bound	1.3143					
	Mean	Upper Bound	1.5913					

	5% Trimmed Mean	1.4476	
	Median	1.0000	
	Variance	.253	
	Std. Deviation	.50253	
	Minimum	1.00	
	Maximum	2.00	
	Range	1.00	
	Interquartile Range	1.00	
	Skewness	.195	.327
	Kurtosis	-2.040	.644
Age in years	Mean	36.5472	.70328
	95% Confidence Interval for Lower Bound	35.1359	
	Mean Upper Bound	37.9584	
	5% Trimmed Mean	36.5042	
	Median	35.0000	
	Variance	26.214	
	Std. Deviation	5.11997	
	Minimum	28.00	
	Maximum	45.00	
	Range	17.00	
	Interquartile Range	9.50	
	Skewness	.293	.327
	Kurtosis	-1.228	.644
etnicity	Mean	1.4906	.06933
	95% Confidence Interval for Lower Bound	1.3515	
	Mean Upper Bound	1.6297	
	5% Trimmed Mean	1.4895	
	Median	1.0000	
	Variance	.255	
	Std. Deviation	.50469	
	Minimum	1.00	
	Maximum	2.00	
	Range	1.00	
	Interquartile Range	1.00	
	Skewness	.039	.327

Percentiles								
					Percentiles			
		5	10	25	50	75	90	95
Weighted	Gender	1.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000
Average(Definition 1)	Age in years	29.7000	30.0000	32.0000	35.0000	41.5000	44.0000	45.0000
	etnicity	1.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000
Tukey's Hinges	Gender			1.0000	1.0000	2.0000		
	Age in years			32.0000	35.0000	41.0000		
	etnicity			1.0000	1.0000	2.0000		

Extreme Values						
			Case Number	Value		
Gender	Highest	1	6	2.00		
		2	7	2.00		
		3	8	2.00		
		4	9	2.00		
		5	10	2.00 ^a		
	Lowest	1	54	1.00		
		2	52	1.00		
		3	49	1.00		
		4	48	1.00		
		5	46	1.00 ^b		
Age in years	Highest	1	2	45.00		
		2	19	45.00		
		3	23	45.00		
		4	45	45.00		
		5	4	44.00 ^c		
	Lowest	1	43	28.00		
		2	54	29.00		
		3	52	30.00		
		4	25	30.00		

		5	22	30.00 ^d
etnicity	Highest	1	1	2.00
		2	4	2.00
		3	5	2.00
		4	8	2.00
		5	10	2.00 ^a
	Lowest	1	54	1.00
		2	53	1.00
		3	51	1.00
		4	49	1.00
		5	48	1.00 ^b

a. Only a partial list of cases with the value 2.00 are shown in the table of upper extremes.

b. Only a partial list of cases with the value 1.00 are shown in the

table of lower extremes.

c. Only a partial list of cases with the value 44.00 are shown in the table of upper extremes.

d. Only a partial list of cases with the value 30.00 are shown in the table of lower extremes.

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Gender	.363	53	.000	.634	53	.000	
Age in years	.147	53	.006	.926	53	.003	
etnicity	.344	53	.000	.637	53	.000	

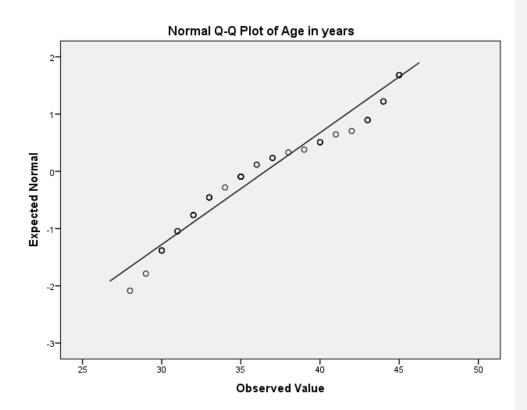
a. Lilliefors Significance Correction

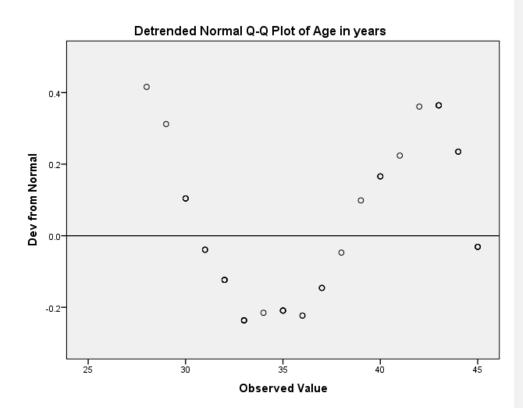
Age in years

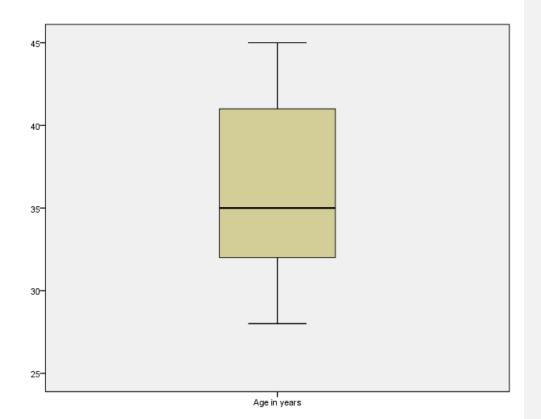
Age in years Stem-and-Leaf Plot

 Frequency
 Stem & Leaf

 2.00
 2.89


 19.00
 3.0000111222223333334


 14.00
 3.5555556677789


 14.00
 4.00001233333444

 4.00
 4.5555

Stem width: 10.00 Each leaf: 1 case(s)

Explore

Case Processing Summary								
		Cases						
	Valid		Mis	sing	Total			
	N	Percent	N	Percent	N	Percent		
Gender	53	100.0%	0	0.0%	53	100.0%		

Age in years	53	100.0%	0	0.0%	53	100.0%
etnicity	53	100.0%	0	0.0%	53	100.0%

	Descrip	otives		
			Statistic	Std. Error
Gender	Mean	. <u>.</u>	1.4528	.06903
	95% Confidence Interval for	Lower Bound	1.3143	
	Mean	Upper Bound	1.5913	
	5% Trimmed Mean		1.4476	
	Median		1.0000	
	Variance		.253	
	Std. Deviation		.50253	
	Minimum		1.00	
	Maximum		2.00	
	Range		1.00	
	Interquartile Range		1.00	
	Skewness		.195	.327
	Kurtosis		-2.040	.644
Age in years	Mean		36.5472	.70328
	95% Confidence Interval for	Lower Bound	35.1359	
	Mean	Upper Bound	37.9584	
	5% Trimmed Mean		36.5042	
	Median		35.0000	
	Variance		26.214	
	Std. Deviation		5.11997	
	Minimum		28.00	
	Maximum		45.00	
	Range		17.00	
	Interquartile Range		9.50	
	Skewness		.293	.327
	Kurtosis		-1.228	.644
etnicity	Mean	·	1.4906	.06933
	95% Confidence Interval for	Lower Bound	1.3515	
	Mean	Upper Bound	1.6297	
	5% Trimmed Mean		1.4895	

Median	1.0000	
Variance	.255	
Std. Deviation	.50469	
Minimum	1.00	
Maximum	2.00	
Range	1.00	
Interquartile Range	1.00	
Skewness	.039	.327
Kurtosis	-2.078	.644

Percentiles									
			Percentiles						
		5 10 25 50 75 90 9						95	
Weighted	Gender	1.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	
Average(Definition 1)	Age in years	29.7000	30.0000	32.0000	35.0000	41.5000	44.0000	45.0000	
	etnicity	1.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	
Tukey's Hinges	Gender			1.0000	1.0000	2.0000			
	Age in years			32.0000	35.0000	41.0000			
	etnicity			1.0000	1.0000	2.0000			

Extreme Values				
	Case Num			

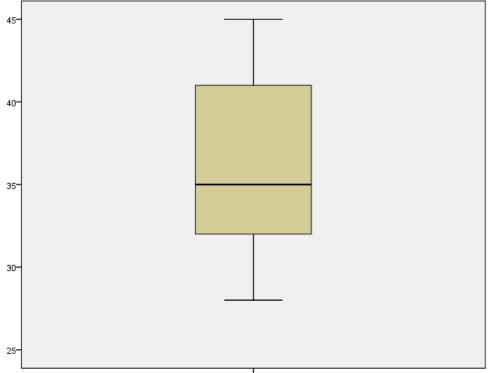
			Case Number	Value
Gender	Highest	1	6	2.00
		2	7	2.00
		3	8	2.00
		4	9	2.00
		5	10	2.00 ^a
	Lowest	1	54	1.00
		2	52	1.00
		3	49	1.00
		4	48	1.00

	-	5	46	1.00 ^b
Age in years	Highest	1	2	45.00
		2	19	45.00
		3	23	45.00
		4	45	45.00
		5	4	44.00 ^c
	Lowest	1	43	28.00
		2	54	29.00
		3	52	30.00
		4	25	30.00
		5	22	30.00 ^d
etnicity	Highest	1	1	2.00
		2	4	2.00
		3	5	2.00
		4	8	2.00
		5	10	2.00 ^a
	Lowest	1	54	1.00
		2	53	1.00
		3	51	1.00
		4	49	1.00
		5	48	1.00 ^b

a. Only a partial list of cases with the value 2.00 are shown in the table of upper extremes.

b. Only a partial list of cases with the value 1.00 are shown in the

table of lower extremes.


c. Only a partial list of cases with the value 44.00 are shown in the table of upper extremes.

d. Only a partial list of cases with the value 30.00 are shown in the table of lower extremes.

Tests of Normality	Tests	of	Normality
--------------------	-------	----	-----------

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Gender	.363	53	.000	.634	53	.000	
Age in years	.147	53	.006	.926	53	.003	
etnicity	.344	53	.000	.637	53	.000	

a. Lilliefors Significance Correction

Age in years

Gender and Ethnicity

Frequency Table

	etnicity							
					Cumulative			
		Frequency	Percent	Valid Percent	Percent			
Valid	African_Americna	27	50.9	50.9	50.9			
	Caucasian	26	49.1	49.1	100.0			
	Total	53	100.0	100.0				

Gender

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	male	29	54.7	54.7	54.7
	female	24	45.3	45.3	100.0
	Total	53	100.0	100.0	

ANOVA Question 3

Explor

clinic where treatment took place

Case Processing Summary										
			Cases							
	clinic where treatment	atment Valid		Missing		Total				
	took place	N	Percent	N	Percent	N	Percent			
Satisfaction with	clinic a	27	100.0%	0	0.0%	27	100.0%			
treatment	clinic b	26	100.0%	0	0.0%	26	100.0%			

Descriptives										
	clinic wh	ere treatment took plac	ce	Statistic	Std. Error					
Satisfaction with	clinic a	Mean		4.6296	.39996					
treatment		95% Confidence Interval for Mean	Lower Bound	3.8075						
			Upper Bound	5.4518						
		5% Trimmed Mean		4.6996						
		Median		5.0000						
		Variance		4.319						
		Std. Deviation		2.07824						

	Minimum		1.00	
	Maximum		7.00	
	Range		6.00	
	Interquartile Range		3.00	
	Skewness		518	.448
	Kurtosis		-1.070	.872
clinic b	Mean		3.6538	.33715
	95% Confidence Interval for Mean	Lower Bound	2.9595	
		Upper Bound	4.3482	
	5% Trimmed Mean		3.6282	
	Median		3.5000	
	Variance		2.955	
	Std. Deviation		1.71912	
	Minimum		1.00	
	Maximum		7.00	
	Range		6.00	
	Interquartile Range		3.00	
	Skewness		.024	.456
	Kurtosis		-1.071	.887

Extreme Values											
	clinic whe	re treatment	took place	Case Number	Value						
Satisfaction with treatment	clinic a	Highest	1	15	7.00						
			2	16	7.00						
			3	43	7.00						
			4	44	7.00						
			5	45	7.00 ^a						
		Lowest	1	41	1.00						
			2	14	1.00						
			3	12	1.00						
			4	39	2.00						
			5	37	2.00 ^b						

		1		-
clinic b	Highest	1	47	7.00
		2	48	6.00
		3	49	6.00
		4	3	5.00
		5	4	5.00 ^c
	Lowest	1	42	1.00
		2	28	1.00
		3	13	1.00
		4	38	2.00
		5	27	2.00 ^b

a. Only a partial list of cases with the value 7.00 are shown in the table of upper extremes.

b. Only a partial list of cases with the value 2.00 are shown in the table of lower extremes.

c. Only a partial list of cases with the value 5.00 are shown in the table of upper extremes.

Tests of Normality

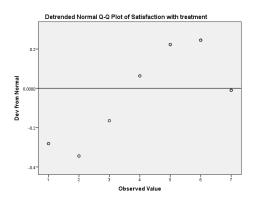
	clinic where treatment	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	took place	Statistic	df	Sig.	Statistic	df	Sig.
Satisfaction with	clinic a	.190	27	.014	.885	27	.006
treatment	clinic b	.206	26	.006	.925	26	.060

a. Lilliefors Significance Correction

clinic where treatment took place = clinic a


Stem-and-Leaf Plots

Satisfaction with treatment Stem-and-Leaf Plot for clinic= clinic a


Frequency Stem & Leaf

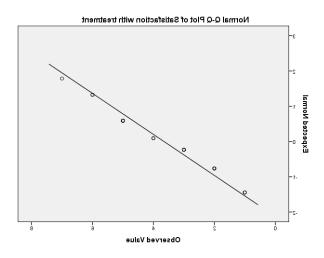
3.00	1.	000
3.00	2.	000
2.00	3.	00
3.00	4.	000
4.00	5.	0000
6.00	6.	000000
6.00	7.	000000
Stem width	1:	1.00
Each leaf:		1 case(s)

Normal Q-Q Plots

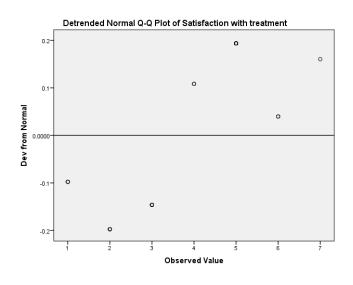
Detrended Normal Q-Q Plots

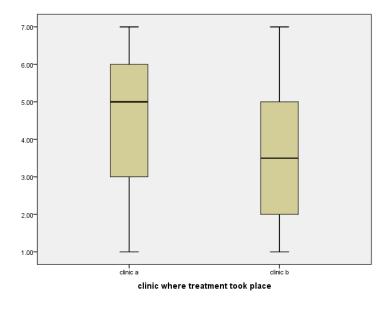
clinic where treatment took place = clinic b

Stem-and-Leaf Plots


Satisfaction with treatment Stem-and-Leaf Plot for clinic= clinic b

Frequency Stem & Leaf


3.00	1.000
5.00	2.00000
5.00	3.00000
2.00	4.00
8.00	5.00000000
2.00	6.00
1.00	7.0


Stem width: 1.00 Each leaf: 1 case(s)

Normal Q-Q Plots

Detrended Normal Q-Q Plots

T-TEST GROUPS=clinic(1 2) /MISSING=ANALYSIS /VARIABLES=txsat /CRITERIA=CI(.95).

T-Test

Group Statistics										
	clinic where			Std.	Std. Error					
	treatment took place	Ν	Mean	Deviation	Mean					
Satisfaction with	clinic a	27	4.6296	2.07824	.39996					
treatment	clinic b	26	3.6538	1.71912	.33715					

	Independent Samples Test									
			st for Equality			t	test for Equalit	v of Means		
						Sig. (2-	Mean	Std. Error	95% Confider the Diff	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Satisfaction with treatment	Equal variances assumed	1.168	.285	1.859	51	.069	.97578	.52499	07818	2.02975
	Equal variances not assumed			1.865	49.883	.068	.97578	.52310	07496	2.02652

ANOVA 4.

Univariate Analysis of Variance

Between-Subjects Factors									
		Value Label	N						
Treatment	1.00	placebo							

Treatment	1.00	placebo	14
	2.00	hypnosis	14
	3.00	relaxation	13
	4.00	cogbehtherapy	12

Descriptive Statistics

Dependent Variable: Pounds lost

Treatment	Mean	Std. Deviation	Ν
placebo	6.5000	2.24465	14
hypnosis	9.2857	3.04905	14
relaxation	6.0000	2.04124	13
cogbehtherapy	14.0000	2.44949	12
Total	8.8113	3.93728	53

Levene's Test of Equality of Error Variances^a

Dependent Variable: Pounds lost

F	df1	df2	Sig.	
1.465	3	49	.236	

Tests the null hypothesis that the error variance of

the dependent variable is equal across groups.

a. Design: Intercept + tx

Dependent Variab	Pependent Variable: Pounds lost									
	Type III Sum		Mean			Partial Eta	Noncent.	Observed		
Source	of Squares	df	Square	F	Sig.	Squared	Parameter	Power ^b		
Corrected Model	503.756ª	3	167.919	27.213	.000	.625	81.639	1.000		
Intercept	4224.877	1	4224.877	684.684	.000	.933	684.684	1.000		
tx	503.756	3	167.919	27.213	.000	.625	81.639	1.000		
Error	302.357	49	6.171							
Total	4921.000	53								
Corrected Total	806.113	52								

a. R Squared = .625 (Adjusted R Squared = .602)

b. Computed using alpha = .05

Estimated Marginal Means

1. Treatment

Dependent Variable: Pounds lost								
			95% Confidence Interval					
Treatment	Mean	Std. Error	Lower Bound	Upper Bound				
placebo	6.500	.664	5.166	7.834				
hypnosis	9.286	.664	7.952	10.620				

relaxation	6.000	.689	4.615	7.385
cogbehtherapy	14.000	.717	12.559	15.441

2. Grand Mean

Dependent Variable: Pounds lost							
95% Confidence Interval							
Mean	Std. Error	Lower Bound	Upper Bound				
8.946	.342	8.259	9.634				

Post Hoc Tests

Treatment

Multiple Comparisons

Dependent Variable: Pounds lost								
			Mean			95% Confide	ence Interval	
			Difference (I-			Lower	Upper	
	(I) Treatment	(J) Treatment	J)	Std. Error	Sig.	Bound	Bound	
Tukey HSD	placebo	hypnosis	-2.7857 [*]	.93889	.023	-5.2826	2888	
		relaxation	.5000	.95677	.953	-2.0445	3.0445	
		cogbehtherap y	-7.5000*	.97722	.000	-10.0989	-4.9011	
	hypnosis	placebo	2.7857 [*]	.93889	.023	.2888	5.2826	
		relaxation	3.2857*	.95677	.006	.7412	5.8302	
		cogbehtherap y	-4.7143 [*]	.97722	.000	-7.3132	-2.1154	
	relaxation	placebo	5000	.95677	.953	-3.0445	2.0445	
		hypnosis	-3.2857*	.95677	.006	-5.8302	7412	
		cogbehtherap y	-8.0000*	.99442	.000	-10.6446	-5.3554	
	cogbehtherap	placebo	7.5000*	.97722	.000	4.9011	10.0989	
	у	hypnosis	4.7143 [*]	.97722	.000	2.1154	7.3132	
		relaxation	8.0000*	.99442	.000	5.3554	10.6446	
Games-Howell	placebo	hypnosis	-2.7857	1.01190	.051	-5.5781	.0066	
		relaxation	.5000	.82487	.929	-1.7690	2.7690	
		cogbehtherap y	-7.5000*	.92730	.000	-10.0694	-4.9306	

hy	pnosis	placebo	2.7857	1.01190	.051	0066	5.5781
		relaxation	3.2857 [*]	.99225	.015	.5382	6.0332
		cogbehtherap y	-4.7143 [*]	1.07891	.001	-7.6913	-1.7373
rela	laxation	placebo	5000	.82487	.929	-2.7690	1.7690
		hypnosis	-3.2857*	.99225	.015	-6.0332	5382
		cogbehtherap y	-8.0000*	.90582	.000	-10.5198	-5.4802
co	gbehtherap	placebo	7.5000*	.92730	.000	4.9306	10.0694
У		hypnosis	4.7143 [*]	1.07891	.001	1.7373	7.6913
		relaxation	8.0000*	.90582	.000	5.4802	10.5198

Based on observed means.

The error term is Mean Square(Error) = 6.171.

*. The mean difference is significant at the .05 level.

Homogeneous Subsets

Pounds lost									
			Subset						
	Treatment	N	1	2	3				
Tukey HSD ^{a,b,c}	relaxation	13	6.0000						
	placebo	14	6.5000						
	hypnosis	14		9.2857					
	cogbehtherapy	12			14.0000				
	Sig.		.955	1.000	1.000				

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 6.171.

a. Uses Harmonic Mean Sample Size = 13.196.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type ${\sf I}$

error levels are not guaranteed.

c. Alpha = .05.

Explore

Case Processing Summary

	Cases							
	Valid		Missing		Total			
	Ν	Percent	Ν	Percent	Ν	Percent		
Residual for LBSlost	53	100.0%	0	0.0%	53	100.0%		

	Descriptives			
		Statis	stic	Std. Error
Residual for LBSlost	Mean	.(0000	.33122
	95% Confidence Interval for Lower B	ound6	646	
	Mean Upper B	ound .6	646	
	5% Trimmed Mean	()465	
	Median	5	5000	
	Variance	5	.815	
	Std. Deviation	2.41	134	
	Minimum	-	4.00	
	Maximum		4.71	
	Range		8.71	
	Interquartile Range		4.00	
	Skewness		.289	.327
	Kurtosis	_	.800	.644

Percentiles

		Percentiles						
		5	10	25	50	75	90	95
Weighted Average(Definition 1)	Residual for LBSlost	-3.6500	-3.2857	-2.0000	5000	2.0000	3.0000	4.7143
Tukey's Hinges	Residual for LBSlost			-2.0000	5000	2.0000		

Extreme Values						
			Case Number	Value		
Residual for LBSlost	Highest	1	15	4.71		
		2	16	4.71		

			-
	3	17	4.71
	4	3	4.50
_	5	29	3.00 ^a
	Lowest 1	47	-4.00
	2	39	-4.00
	3	14	-3.50
	4	27	-3.29
	5	26	-3.29 ^b

a. Only a partial list of cases with the value 3.00 are shown in the table of upper extremes.

b. Only a partial list of cases with the value -3.29 are shown in the table of lower extremes.

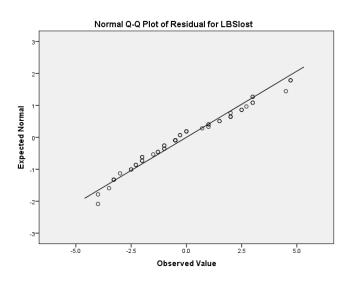
Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Residual for LBSlost	.104	53	.200*	.961	53	.081

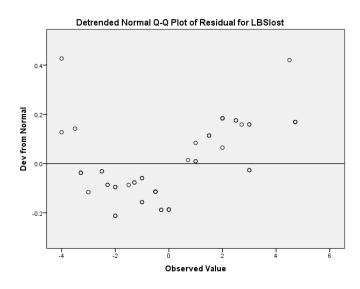
*. This is a lower bound of the true significance.

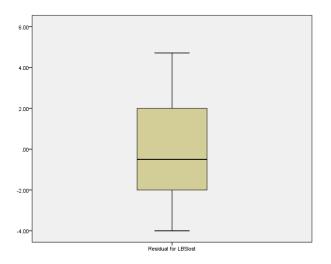
a. Lilliefors Significance Correction

Stem-and-Leaf Plots

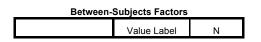

Residual for LBSlost Stem-and-Leaf Plot

Frequency Stem & Leaf


1.00	-4.0
5.00	-3. 02225
7.00	-2.0002255
5.00	-1.00225
9.00	-0.002255555
6.00	0.000007
5.00	1.00055
7.00	2.0000557


4.00 4.00	 0000 5777
Stem widt Each leaf:	1.00 1 case(s)

Normal Q-Q Plots


Detrended Normal Q-Q Plots

ANOVA 5.

Univariate Analysis of Variance

Treatment	1.00	placebo	14
	2.00	hypnosis	14
	3.00	relaxation	13
	4.00	cogbehtherapy	12

Descriptive Statistics

Dependent Variable: Posttreatment eating control scores (1-20)

Treatment	Mean	Std. Deviation	Ν
placebo	6.7143	2.99817	14
hypnosis	9.2143	3.26234	14
relaxation	7.0000	2.48328	13
cogbehtherapy	12.1667	2.03753	12
Total	8.6792	3.44056	53

Levene's Test of Equality of Error Variances^a

Dependent Variable: Posttreatment eating control

scores (1-20)

F	df1	df2	Sig.
.922	3	49	.437

Tests the null hypothesis that the error variance of

the dependent variable is equal across groups.

a. Design: Intercept + tx

Tests of Between-Subjects Effects

Dependent Variab	Pependent Variable: Posttreatment eating control scores (1-20)									
	Type III Sum		Mean			Partial Eta	Noncent.	Observed		
Source	of Squares	df	Square	F	Sig.	Squared	Parameter	Power ^b		
Corrected Model	240.666ª	3	80.222	10.486	.000	.391	31.457	.998		
Intercept	4063.414	1	4063.414	531.121	.000	.916	531.121	1.000		
tx	240.666	3	80.222	10.486	.000	.391	31.457	.998		
Error	374.881	49	7.651							
Total	4608.000	53								
Corrected Total	615.547	52								

a. R Squared = .391 (Adjusted R Squared = .354)

b. Computed using alpha = .05

Estimated Marginal Means

Dependent Variable: Posttreatment eating control scores (1-20) 95% Confidence Interval Std. Error Treatment Mean Lower Bound Upper Bound placebo 6.714 .739 5.229 8.200 7.729 10.700 hypnosis 9.214 .739 7.000 .767 5.458 8.542 relaxation cogbehtherapy 12.167 .798 10.562 13.771

1. Treatment

2. Grand Mean

Dependent Variable: Posttreatment eating control scores (1-20)

		95% Confidence Interval				
Mean	Std. Error	Lower Bound	Upper Bound			
8.774	.381	8.009	9.539			

Post Hoc Tests

Treatment

Multiple Comparisons

Dependent Variable: Posttreatment eating control scores (1-20)

			Mean			95% Confide	ence Interval
			Difference (I-			Lower	Upper
	(I) Treatment	(J) Treatment	J)	Std. Error	Sig.	Bound	Bound
Tukey HSD	placebo	hypnosis	-2.5000	1.04544	.092	-5.2803	.2803
		relaxation	2857	1.06536	.993	-3.1190	2.5475
		cogbehtherap y	-5.4524 [*]	1.08813	.000	-8.3462	-2.5586
	hypnosis	placebo	2.5000	1.04544	.092	2803	5.2803
		relaxation	2.2143	1.06536	.174	6190	5.0475
		cogbehtherap y	-2.9524 [*]	1.08813	.044	-5.8462	0586
	relaxation	placebo	.2857	1.06536	.993	-2.5475	3.1190
		hypnosis	-2.2143	1.06536	.174	-5.0475	.6190

		cogbehtherap	-5.1667 [*]	1.10728	.000	-8.1114	-2.2219
	cogbehtherap	placebo	5.4524 [*]	1.08813	.000	2.5586	8.3462
	у	hypnosis	2.9524 [*]	1.08813	.044	.0586	5.8462
		relaxation	5.1667*	1.10728	.000	2.2219	8.1114
Games-Howell	placebo	hypnosis	-2.5000	1.18418	.176	-5.7501	.7501
		relaxation	2857	1.05661	.993	-3.1945	2.6231
		cogbehtherap y	-5.4524*	.99400	.000	-8.2038	-2.7010
	hypnosis	placebo	2.5000	1.18418	.176	7501	5.7501
		relaxation	2.2143	1.11111	.218	8498	5.2784
		cogbehtherap	-2.9524 [*]	1.05174	.047	-5.8717	0330
	relaxation	placebo	.2857	1.05661	.993	-2.6231	3.1945
		hypnosis	-2.2143	1.11111	.218	-5.2784	.8498
		cogbehtherap	-5.1667 [*]	.90571	.000	-7.6755	-2.6579
	cogbehtherap	placebo	5.4524 [*]	.99400	.000	2.7010	8.2038
	у	hypnosis	2.9524 [*]	1.05174	.047	.0330	5.8717
		relaxation	5.1667 [*]	.90571	.000	2.6579	7.6755

Based on observed means.

The error term is Mean Square(Error) = 7.651.

*. The mean difference is significant at the .05 level.

Homogeneous Subsets

Posttreatment eating control scores (1-20)

			Subset		
	Treatment	N	1	2	
Tukey HSD ^{a,b,c}	placebo	14	6.7143		
	relaxation	13	7.0000		
	hypnosis	14	9.2143		
	cogbehtherapy	12		12.1667	
	Sig.		.107	1.000	

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 7.651.

a. Uses Harmonic Mean Sample Size = 13.196.

b. The group sizes are unequal. The harmonic mean of the group sizes is

used. Type I error levels are not guaranteed.

c. Alpha = .05.

Explore

Case Processing Summary									
	Cases								
	Va	lid	Mis	sing	Total				
	N	Percent	Ν	Percent	Ν	Percent			
Residual for EAtCon	53	100.0%	0	0.0%	53	100.0%			

	Descriptives			
			Statistic	Std. Error
Residual for EAtCon	Mean		.0000	.36881
	95% Confidence Interval for L	ower Bound	7401	
	Mean U	Jpper Bound	.7401	
	5% Trimmed Mean		0672	
	Median		1667	
	Variance		7.209	
	Std. Deviation		2.68500	
	Minimum		-6.00	
	Maximum		6.29	
	Range		12.29	
	Interquartile Range		3.92	
	Skewness		.348	.327
	Kurtosis		.025	.644

Percentiles

			Percentiles					
		5	10	25	50	75	90	95
Weighted Average(Definition 1)	Residual for EAtCon	-3.8643	-3.5143	-2.0833	1667	1.8333	3.0000	5.7857
Tukey's Hinges	Residual for EAtCon			-2.0000	1667	1.8333		

	Extre	eme Value	S	
			Case Number	Value
Residual for EAtCon	Highest	1	1	6.29
		2	15	5.79
		3	19	5.79
		4	3	5.29
		5	29	3.00 ^a
	Lowest	1	39	-6.00
		2	24	-4.21
		3	14	-3.71
		4	13	-3.71
		5	12	-3.71

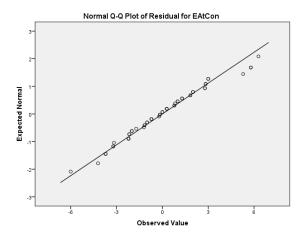
a. Only a partial list of cases with the value 3.00 are shown in the table of upper extremes.

Tests of Normality									
	Koln	nogorov-Smir	nov ^a	Shapiro-Wilk					
	Statistic	df	Sig.	Statistic	df	Sig.			
Residual for EAtCon	.061	53	.200*	.978	53	.428			

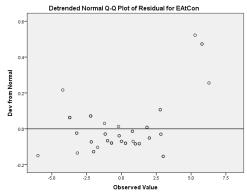
*. This is a lower bound of the true significance.

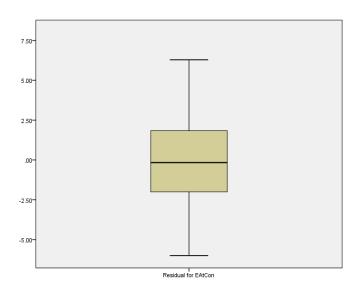
a. Lilliefors Significance Correction

Stem-and-Leaf Plots


Residual for EAtCon Stem-and-Leaf Plot

Frequency Stem & Leaf


1.00	-0.6
1.00	-0.4
13.00	-0. 222222333333
12.00	-0.000000111111
14.00	0.0000000111111
8.00	0.22222233
3.00	0.555
1.00	0.6


Stem width: 10.00 Each leaf: 1 case(s)

Normal Q-Q Plots

Detrended Normal Q-Q Plots

Chi-square 1.

NPar Tests

Chi-Square Test

Frequencies

math								
	Observed N	Expected N	Residual					
mostly A's	44	6.1	37.9					
A and B's	7	12.3	-5.3					
mostly B's	26	14.8	11.2					
B's and C's	18	18.5	4					
mostly C's	15	19.7	-4.7					
C's and D's	8	18.5	-10.5					
mostly D's	1	14.8	-13.8					
D's and F's	3	12.3	-9.3					
Mostly F's	1	6.1	-5.1					
Total	123							

Test Statistics							
math							
Chi-Square	275.005 ^a						
df	8						
Asymp. Sig.	.000						

a. 0 cells (0.0%) have expected frequencies less than 5. The minimum expected cell frequency is 6.1.

Descriptives

	Descriptive Statistics											
	N	Range	Minimu m	Maximu m	Me	an	Std. Deviation	Varianc e	Skev	ness	Kurl	tosis
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
math Valid N (listwise)	123 123	8	1	9	3.02	.175	1.942	3.770	.714	.218	045	.433

-9.3

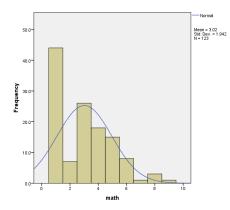
Chi-square 1

NPar Tests

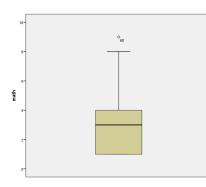
Chi-Square Test Frequencies

•									
math									
	Observed N	Expected N	Residual						
mostly A's	44	6.1	37.9						
A and B's	7	12.3	-5.3						
mostly B's	26	14.8	11.2						
B's and C's	18	18.5	4						
mostly C's	15	19.7	-4.7						
C's and D's	8	18.5	-10.5						
mostly D's	1	14.8	-13.8						
D's and F's	3	12.3	-9.3						
D o and i o	Ũ		0						

Mostly F's	1	6.1	-5.1
Total	123		


Test Statistics							
math							
Chi-Square	275.005 ^a						
df	8						
Asymp. Sig.	.000						

a. 0 cells (0.0%) have expected frequencies less than 5. The minimum expected cell frequency is 6.1.


Descriptives

	Descriptive Statistics												
				Minimu	Maximu			Std.	Varianc				
		N	Range	m	m	Me	ean	Deviation	е	Skev	ness	Kurl	osis
							Std.				Std.		Std.
		Statistic	Statistic	Statistic	Statistic	Statistic	Error	Statistic	Statistic	Statistic	Error	Statistic	Error
ma	ath	123	8	1	9	3.02	.175	1.942	3.770	.714	.218	045	.433
	ilid N stwise)	123											

GGraph

GGraph

Chi-Square 2

Crosstabs

Case Processing Summary

	Cases						
	Va	lid	Mis	sing	Total		
	N	Percent	N	Percent	Ν	Percent	
gpa * grade	121	98.4%	2	1.6%	123	100.0%	

gpa * grade Crosstabulation							
			gra				
			9th grade	10th grade	Total		
gpa	1.5-1.0	Count	2	3	5		
		Expected Count	2.6	2.4	5.0		
		% within grade	3.2%	5.2%	4.1%		
		Standardized Residual	4	.4			
	2.0-2.4	Count	7	4	11		
		Expected Count	5.7	5.3	11.0		
		% within grade	11.1%	6.9%	9.1%		
		Standardized Residual	.5	6			
	2.5-2.9	Count	7	14	21		
		Expected Count	10.9	10.1	21.0		
		% within grade	11.1%	24.1%	17.4%		
		Standardized Residual	-1.2	1.2			
	3.0-3.4	Count	12	16	28		
		Expected Count	14.6	13.4	28.0		
		% within grade	19.0%	27.6%	23.1%		
		Standardized Residual	7	.7			
	3.5-3.9	Count	19	17	36		
		Expected Count	18.7	17.3	36.0		
		% within grade	30.2%	29.3%	29.8%		
		Standardized Residual	.1	1			
	4.0	Count	16	4	20		
		Expected Count	10.4	9.6	20.0		
		% within grade	25.4%	6.9%	16.5%		
		Standardized Residual	1.7	-1.8			
Total		Count	63	58	121		
		Expected Count	63.0	58.0	121.0		
		% within grade	100.0%	100.0%	100.0%		

Chi-Square Tests

	Value	df	Asymptotic Significance (2- sided)
Pearson Chi-Square	11.046 ^a	5	.050
Likelihood Ratio	11.596	5	.041
Linear-by-Linear Association	3.808	1	.051
N of Valid Cases	121		

a. 2 cells (16.7%) have expected count less than 5. The minimum expected count is 2.40.

Symmetric Measures								
		Value	Approximate Significance					
Nominal by Nominal	Phi	.302	.050					
	Cramer's V	.302	.050					
	Contingency Coefficient	.289	.050					
N of Valid Cases		121						

Correlation

Explore

Case Processing Summary

	Cases								
	Valid		Mis	sing	Total				
	Ν	Percent	Ν	Percent	N	Percent			
self-efficacy	120	100.0%	0	0.0%	120	100.0%			

Descriptives

			Statistic	Std. Error
self-efficacy	Mean		3.7879	.07649
	95% Confidence Interval for	Lower Bound	3.6365	
	Mean	Upper Bound	3.9394	

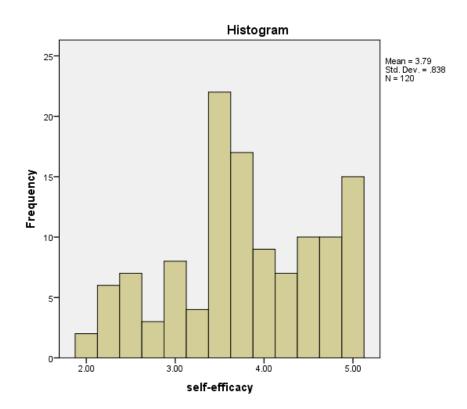
	-	
5% Trimmed Mean	3.8125	
Median	3.8000	
Variance	.702	
Std. Deviation	.83789	
Minimum	2.00	
Maximum	5.00	
Range	3.00	
Interquartile Range	1.15	
Skewness	266	.221
Kurtosis	715	.438

Percentiles

			Percentiles							
		5	10	25	50	75	90	95		
Weighted Average(Definition 1)	self-efficacy	2.2000	2.4200	3.2500	3.8000	4.4000	5.0000	5.0000		
Tukey's Hinges	self-efficacy			3.3000	3.8000	4.4000				

Extreme Values

			Case Number	Value
self-efficacy	Highest	1	3	5.00
		2	19	5.00
		3	20	5.00
		4	27	5.00
		5	30	5.00 ^a
	Lowest	1	53	2.00
		2	29	2.00
		3	111	2.20
		4	110	2.20
		5	50	2.20 ^b

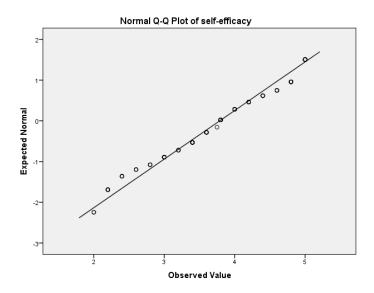

a. Only a partial list of cases with the value 5.00 are shown in the table of upper extremes.

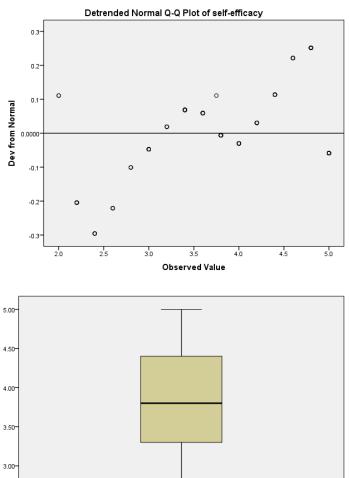
b. Only a partial list of cases with the value 2.20 are shown in the table of lower extremes.

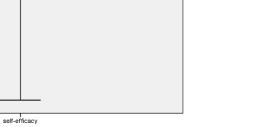
Tests of Normality									
	Kolm	nogorov-Smir	ogorov-Smirnov ^a Shapiro-Wilk						
	Statistic	df	Sig.	Statistic	df	Sig.			
self-efficacy	.095	120	.010	.951	120	.000			

a. Lilliefors Significance Correction

self-efficacy

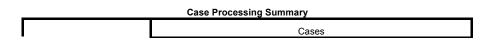

self-efficacy Stem-and-Leaf Plot


Frequency Stem & Leaf


2.00	2.00
6.00	2 . 222222
4.00	2.4444
3.00	2.666
3.00	2.888
8.00	3.00000000
4.00	3.2222
11.00	3.4444444444
12.00	3.66666666666
16.00	3.8888888888888888888888888888888888888
9.00	4.00000000
7.00	4 . 2222222
6.00	4 . 444444
4.00	4.6666
10.00	4.8888888888
15.00	5.000000000000000

Stem width: Each leaf: 1.00

1 case(s)



Explore

2.50-

2.00-

	Valid		Mis	sing	Total		
	Ν	Percent	Ν	Percent	Ν	Percent	
focus on learning rather	120	100.0%	0	0.0%	120	100.0%	
than grade	120	100.0%	0	0.0%	120	100.0%	

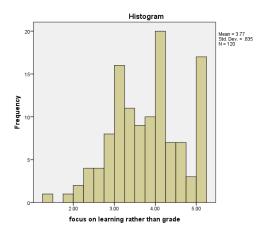
	Descriptives			
			Statistic	Std. Error
focus on learning rather than	Mean	.	3.7663	.07621
grade	95% Confidence Interval for	Lower Bound	3.6154	
	Mean	Upper Bound	3.9172	
	5% Trimmed Mean		3.7954	
	Median		3.8000	
	Variance		.697	
	Std. Deviation		.83481	
	Minimum		1.40	
	Maximum	5.00		
	Range		3.60	
	Interquartile Range		1.20	
	Skewness		261	.221
	Kurtosis		478	.438

Percentiles								
		Percentiles						
		5	10	25	50	75	90	95
Weighted Average(Definition 1)	focus on learning rather than grade	2.4000	2.6200	3.2000	3.8000	4.4000	5.0000	5.000
Tukey's Hinges	focus on learning rather than grade			3.2000	3.8000	4.4000		

Extreme Values							
		Case Number	Value				
focus on learning rather than Highest	1	3	5.00				

			L	_
grade		2	9	5.00
		3	15	5.00
		4	19	5.00
		5	32	5.00 ^a
	Lowest	1	25	1.40
		2	111	1.86
		3	56	2.00
		4	50	2.00
		5	96	2.40 ^b

a. Only a partial list of cases with the value 5.00 are shown in the table of upper extremes.

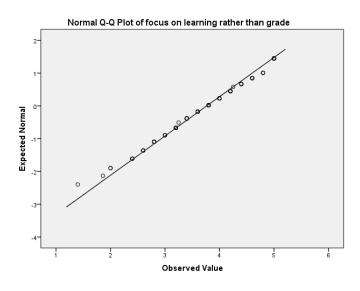

b. Only a partial list of cases with the value 2.40 are shown in the table of lower extremes.

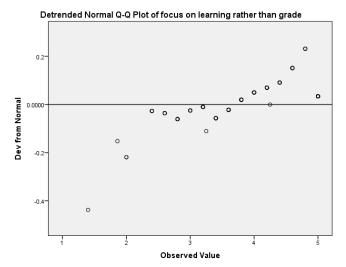
Tests of Normality

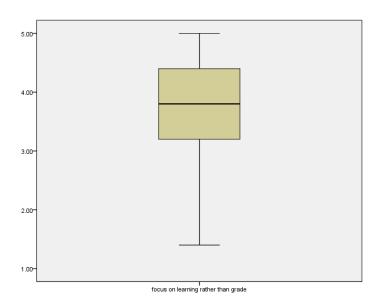
	Kolm	nogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
focus on learning rather	.072	120	.193	.963	120	.002	
than grade	.072	120	.195	.905	120	.002	

a. Lilliefors Significance Correction

focus on learning rather than grade




focus on learning rather than grade Stem-and-Leaf Plot


Frequency Stem & Leaf

1.00	1.4
1.00	1.8
6.00	2.004444
12.00	2.666688888888
27.00	3. 000022222222222444444444
19.00	3.6666666668888888888
27.00	4. 0000000002222222222444444
10.00	4.6666666888
17.00	5.00000000000000000

Stem width: 1.00 Each leaf: 1 case(s)

Explore

Case Processing Summary						
	Cases					
	Va	llid	Missing		То	tal
	Ν	Percent	N	Percent	N	Percent
focus on demonstrating ability, getting the grade	120	100.0%	0	0.0%	120	100.0%

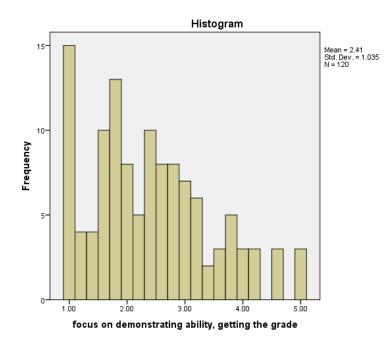
	Descriptives			
			Statistic	Std. Error
focus on demonstrating	Mean	-	2.4092	.09451
ability, getting the grade	95% Confidence Interval for	Lower Bound	2.2220	
	Mean	Upper Bound	2.5963	
	5% Trimmed Mean		2.3556	
	Median		2.4000	
	Variance		1.072	
	Std. Deviation	1.03534		
	Minimum		1.00	

Maximum	5.00	
Range	4.00	
Interquartile Range	1.40	
Skewness	.578	.221
Kurtosis	319	.438

Percentiles								
			Percentiles					
		5	10	25	50	75	90	95
Weighted Average(Definition 1)	focus on demonstrating ability, getting the grade	1.0000	1.0000	1.6000	2.4000	3.0000	3.9800	4.4850
Tukey's Hinges	focus on demonstrating ability, getting the grade			1.6000	2.4000	3.0000		

	Extrem	e Values		
			Case Number	Value
focus on demonstrating	Highest	1	51	5.00
ability, getting the grade		2	108	5.00
		3	115	5.00
		4	11	4.60
		5	37	4.60
	Lowest	1	122	1.00
		2	112	1.00
		3	103	1.00
		4	94	1.00
		5	89	1.00 ^a

a. Only a partial list of cases with the value 1.00 are shown in the table of lower extremes.


Tests of Normality

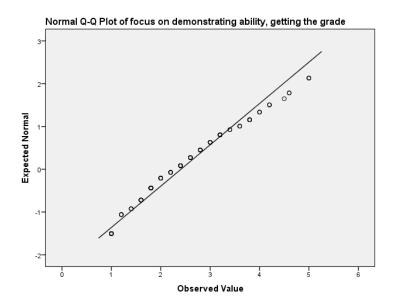
Koln	nogorov-Smir	mov ^a	Shapiro-Wilk			
Statistic	df	Sig.	Statistic	df	Sig.	

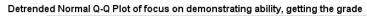
focus on demonstrating ability, getting the grade	5 120	.002	.948	120	.000
--	-------	------	------	-----	------

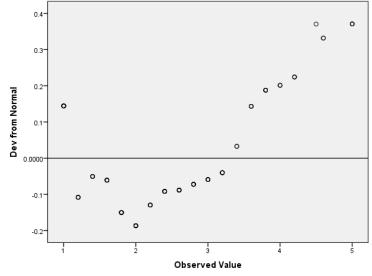
a. Lilliefors Significance Correction

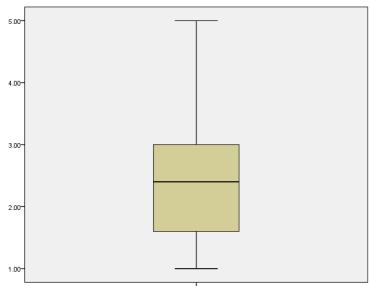
focus on demonstrating ability, getting the grade

focus on demonstrating ability, getting the grade Stem-and-Leaf Plot


Frequency Stem & Leaf


23.00	1	0000000000000022224444
25.00	1	000000000000000000000000000000000000000


- 23.00 2.000000022222444444444
- 16.00 2.666666688888888
- 15.00 3.00000022222244


8.00	3.66688888
6.00	4.000222
3.00	4.566
3.00	5.000

Stem width: 1.00 Each leaf: 1 case(s)

focus on demonstrating ability, getting the grade

Correlations

Descriptive Statistics						
	Mean	Std. Deviation	N			
self-efficacy	3.7879	.83789	120			
focus on learning rather	3,7663	.83481	120			
than grade	3.7003	.03401	120			
focus on demonstrating	2.4092	1.03534	120			
ability, getting the grade	2.4032	1.00004	120			

	Correla	tions		
				focus on
			focus on	demonstrating
			learning rather	ability, getting
		self-efficacy	than grade	the grade
self-efficacy	Pearson Correlation	1	.539**	.167
	Sig. (2-tailed)		.000	.069
	Ν	120	120	120
focus on learning rather than	Pearson Correlation	.539**	1	.294**
grade	Sig. (2-tailed)	.000		.001
	Ν	120	120	120
focus on demonstrating	Pearson Correlation	.167	.294**	1
ability, getting the grade	Sig. (2-tailed)	.069	.001	
	Ν	120	120	120

**. Correlation is significant at the 0.01 level (2-tailed).

Nonparametric Correlations

Correlations

		focus on
	focus on	demonstrating
	learning rather	ability, getting
self-efficacy	than grade	the grade

Spearman's rho	self-efficacy	Correlation Coefficient	1.000	.531**	.126
		Sig. (2-tailed)		.000	.169
		N	120	120	120
	focus on learning rather	Correlation Coefficient	.531**	1.000	.283**
	than grade	Sig. (2-tailed)	.000		.002
		N	120	120	120
	focus on demonstrating	Correlation Coefficient	.126	.283**	1.000
	ability, getting the grade	Sig. (2-tailed)	.169	.002	
		Ν	120	120	120

**. Correlation is significant at the 0.01 level (2-tailed).

Correlation 1a

Report

Sum

Grand Total 44.90

Correlation 1b.

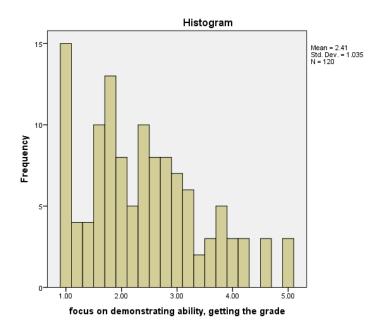
Explore

Case Processing Summary							
			Ca	ses			
	Va	Valid			То	otal	
	N	Percent	N	Percent	N	Percent	
focus on demonstrating ability, getting the grade	120	100.0%	0	0.0%	120	100.0%	

	Descriptives			
			Statistic	Std. Error
focus on demonstrating	Mean	-	2.4092	.09451
ability, getting the grade	95% Confidence Interval for	Lower Bound	2.2220	
	Mean	Upper Bound	2.5963	
	5% Trimmed Mean		2.3556	
	Median		2.4000	
	Variance		1.072	
	Std. Deviation		1.03534	
	Minimum		1.00	
	Maximum		5.00	
	Range		4.00	
	Interquartile Range		1.40	
	Skewness		.578	.221
	Kurtosis		319	.438

Percentiles								
		Percentiles						
		5	10	25	50	75	90	95
Weighted Average(Definition 1)	focus on demonstrating ability, getting the grade	1.0000	1.0000	1.6000	2.4000	3.0000	3.9800	4.4850
Tukey's Hinges	focus on demonstrating ability, getting the grade			1.6000	2.4000	3.0000		

	Extrem	e Values		
			Case Number	Value
focus on demonstrating	Highest	1	51	5.00
ability, getting the grade		2	108	5.00
		3	115	5.00
		4	11	4.60
		5	37	4.60
	Lowest	1	122	1.00

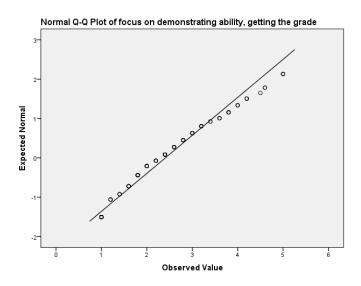

2	112	1.00
3	103	1.00
4	94	1.00
5	89	1.00 ^a

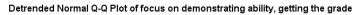
a. Only a partial list of cases with the value 1.00 are shown in the table of lower extremes.

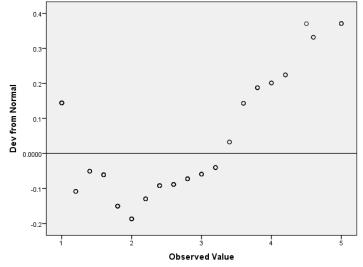
Tests of Normality						
	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
focus on demonstrating ability, getting the grade	.105	120	.002	.948	120	.000

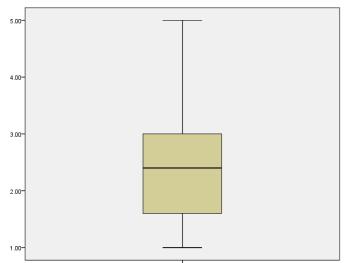
a. Lilliefors Significance Correction

focus on demonstrating ability, getting the grade




focus on demonstrating ability, getting the grade Stem-and-Leaf Plot


Frequency Stem & Leaf


23.00	1.000000000000022224444
23.00	1.6666666666888888888888888888888888888
23.00	2.0000000222224444444444
16.00	2.6666666688888888
15.00	3.00000022222244
8.00	3.66688888
6.00	4.000222
3.00	4.566
3.00	5.000

Stem width: 1.00 Each leaf: 1 case(s)

focus on demonstrating ability, getting the grade

Correlations

Descriptive Statistics							
	Mean Std. Deviation N						
self-efficacy	3.7879	.83789	120				
focus on learning rather	3.7663	.83481	120				
than grade	5.7005	.00401	120				
focus on demonstrating	2,4092	1.03534	120				
ability, getting the grade	2.4032	1.05554	120				

	Correla	tions		
				focus on
			focus on	demonstrating
			learning rather	ability, getting
		self-efficacy	than grade	the grade
self-efficacy	Pearson Correlation	1	.539**	.167
	Sig. (2-tailed)		.000	.069
	Ν	120	120	120
focus on learning rather than	Pearson Correlation	.539**	1	.294**
grade	Sig. (2-tailed)	.000		.001
	Ν	120	120	120
focus on demonstrating	Pearson Correlation	.167	.294**	1
ability, getting the grade	Sig. (2-tailed)	.069	.001	
	Ν	120	120	120

**. Correlation is significant at the 0.01 level (2-tailed).

Nonparametric Correlations

Correlations				
				focus on
			focus on	demonstrating
			learning rather	ability, getting
		self-efficacy	than grade	the grade
Spearman's rho self-efficacy	Correlation Coefficient	1.000	.531**	.126

	Sig. (2-tailed)		.000	.169
	Ν	120	120	120
focus on learning rather	Correlation Coefficient	.531**	1.000	.283**
than grade	Sig. (2-tailed)	.000		.002
	N	120	120	120
focus on demonstrating	Correlation Coefficient	.126	.283**	1.000
ability, getting the grade	Sig. (2-tailed)	.169	.002	
	Ν	120	120	120

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations

gender = male

Descriptive Statistics ^a						
	Mean Std. Deviation N					
self-efficacy	3.8816	1.03434	49			
focus on learning rather	3.6584	.92489	49			
than grade	5.0504	.92409	45			
focus on demonstrating	2.3878	.92323	49			
ability, getting the grade	2.3070	.92323	49			

a. gender = male

Correlations ^a					
		self-efficacy	focus on learning rather than grade	focus on demonstrating ability, getting the grade	
self-efficacy	Pearson Correlation Sig. (2-tailed) N	1 49	.619 ^{**} .000 49	.139 .341 49	
focus on learning rather than grade	Pearson Correlation Sig. (2-tailed)	.619 ^{**} .000	1	.208 .151	
	Ν	49	49	49	
focus on demonstrating	Pearson Correlation	.139	.208	1	

ability, getting the grade	Sig. (2-tailed)	.341	.151		
	Ν	49	49	49	

**. Correlation is significant at the 0.01 level (2-tailed).

a. gender = male

gender = female

Descriptive Statistic	csa
-----------------------	-----

	Mean	Std. Deviation	Ν
self-efficacy	3.7232	.67044	71
focus on learning rather	3.8408	.76445	71
than grade	5.0400	.70445	71
focus on demonstrating	2,4239	1.11233	71
ability, getting the grade	2.4239	1.11233	7.1

a. gender = female

	Correlat	tions ^a		
				focus on
			focus on	demonstrating
			learning rather	ability, getting
		self-efficacy	than grade	the grade
self-efficacy	Pearson Correlation	1	.482**	.211
	Sig. (2-tailed)		.000	.078
	Ν	71	71	71
focus on learning rather than	Pearson Correlation	.482**	1	.361**
grade	Sig. (2-tailed)	.000		.002
	Ν	71	71	71
focus on demonstrating	Pearson Correlation	.211	.361**	1
ability, getting the grade	Sig. (2-tailed)	.078	.002	
	Ν	71	71	71

**. Correlation is significant at the 0.01 level (2-tailed).

a. gender = female

Nonparametric Correlations

gender = male

		Correlations ^a			
					focus on
				focus on	demonstrating
				learning rather	ability, getting
			self-efficacy	than grade	the grade
Spearman's rho	self-efficacy	Correlation Coefficient	1.000	.637**	.116
		Sig. (2-tailed)		.000	.427
		N	49	49	49
	focus on learning rather	Correlation Coefficient	.637**	1.000	.229
	than grade	Sig. (2-tailed)	.000		.113
		N	49	49	49
	focus on demonstrating	Correlation Coefficient	.116	.229	1.000
	ability, getting the grade	Sig. (2-tailed)	.427	.113	
		Ν	49	49	49

**. Correlation is significant at the 0.01 level (2-tailed).

a. gender = male

gender = female

Correlations ^a			
			focus on
		focus on	demonstrating
		learning rather	ability, getting
	self-efficacy	than grade	the grade

Spearman's rho	self-efficacy	Correlation Coefficient	1.000	.458**	.162
		Sig. (2-tailed)		.000	.176
		Ν	71	71	71
	focus on learning rather	Correlation Coefficient	.458**	1.000	.371**
	than grade	Sig. (2-tailed)	.000		.001
		Ν	71	71	71
	focus on demonstrating ability, getting the grade	Correlation Coefficient	.162	.371**	1.000
		Sig. (2-tailed)	.176	.001	
		Ν	71	71	71

 ** . Correlation is significant at the 0.01 level (2-tailed).

a. gender = female

ANOVA-post-hoc

1.

Univariate Analysis of Variance

Between-Subjects Factors

		Value Label	N
Recode1	1	A,A/B	51
	2	B,B/C	44
	3	C-F	28

Descriptive Statistics

Dependent Variable: self-efficacy								
	Recode1	Mean	Std. Deviation	N				
	A,A/B	4.2275	.72113	51				
	B,B/C	3.5580	.75736	44				
	C-F	3.1714	.87891	28				
	Total	3.7476	.87845	123				

Levene's Test of Equality of Error Variances^a

Dependent Variable: self-efficacy

F	df1	df2	Sig.	
.256	2	120	.774	

Tests the null hypothesis that the error variance of

the dependent variable is equal across groups.

a. Design: Intercept + ANOVA1

Dependent Variable: self-efficacy								
	Type III Sum		Mean			Partial Eta	Noncent.	Observed
Source	of Squares	df	Square	F	Sig.	Squared	Parameter	Power ^b
Corrected Model	22.621ª	2	11.310	18.976	.000	.240	37.953	1.000
Intercept	1538.157	1	1538.157	2580.676	.000	.956	2580.676	1.000
ANOVA1	22.621	2	11.310	18.976	.000	.240	37.953	1.000
Error	71.523	120	.596					
Total	1821.583	123						
Corrected Total	94.144	122						

Tests of Between-Subjects Effects

a. R Squared = .240 (Adjusted R Squared = .228)

b. Computed using alpha = .05

Custom Hypothesis Tests

	Contrast Results (K Matrix)						
		Dependent Variable					
Recode1 Repeated	Recode1 Repeated Contrast						
Level 1 vs. Level 2	Contrast Estimate	.669					
	Hypothesized Value	0					
	Difference (Estimate - Hypothesized)	.669					
	Std. Error	.159					
	Sig.	.000					
	95% Confidence Interval for Lower Bound	.355					

	Difference	Upper Bound	.984
Level 2 vs. Level 3	Contrast Estimate		.387
	Hypothesized Value		0
	Difference (Estimate - Hypoth	.387	
	Std. Error	.187	
	Sig.		.041
	95% Confidence Interval for	Lower Bound	.017
	Difference	Upper Bound	.756

Test Results

Dependen	Dependent Variable: self-efficacy								
	Sum of		Mean			Partial Eta	Noncent.	Observed	
Source	Squares	df	Square	F	Sig.	Squared	Parameter	Power ^a	
Contras t	22.621	2	11.310	18.976	.000	.240	37.953	1.000	
Error	71.523	120	.596						

a. Computed using alpha = .05

Estimated Marginal Means

1. Grand Mean

Dependent Variable: self-efficacy

		95% Confidence Interval			
Mean	Std. Error	Lower Bound	Upper Bound		
3.652	.072	3.510	3.795		

2. Recode1

Dependent Variable: self-efficacy							
			95% Confidence Interval				
Recode1	Mean	Std. Error	Lower Bound	Upper Bound			

A,A/B	4.227	.108	4.013	4.441
B,B/C	3.558	.116	3.328	3.788
C-F	3.171	.146	2.883	3.460

Contrast Coefficients

	Recode1						
Contrast	A,A/B	B,B/C	C-F				
1	2	-1	-1				
2	0	-1	1				
3	1	-1	0				
4	1	0	-1				

	Contrast Tests									
			Value of							
		Contrast	Contrast	Std. Error	t	df	Sig. (2-tailed)			
self-efficacy	Assume equal variances	1	1.7255	.28562	6.041	120	.000			
		2	3865	.18664	-2.071	120	.041			
		3	.6695	.15885	4.215	120	.000			
		4	1.0560	.18159	5.816	120	.000			
	Does not assume equal	1	1.7255	.28533	6.047	101.322	.000			
	variances	2	3865	.20156	-1.918	51.346	.061			
		3	.6695	.15242	4.392	89.490	.000			
		4	1.0560	.19438	5.433	47.167	.000			

Post Hoc Tests

Recode1

Multiple Comparisons

······································										
Dependent Varia	Dependent Variable: self-efficacy									
	-		Mean Difference (I-			95% Confide	ence Interval			
	(I) Recode1	(J) Recode1	J)	Std. Error	Sig.	Lower Bound	Upper Bound			
Tukey HSD	A,A/B	B,B/C	.6695*	.15885	.000	.2925	1.0465			
		C-F	1.0560 [*]	.18159	.000	.6251	1.4870			
	B,B/C	A,A/B	6695*	.15885	.000	-1.0465	2925			
		C-F	.3865	.18664	.100	0564	.8294			
	C-F	A,A/B	-1.0560 [*]	.18159	.000	-1.4870	6251			
		B,B/C	3865	.18664	.100	8294	.0564			
Games-Howell	A,A/B	B,B/C	.6695*	.15242	.000	.3062	1.0328			
		C-F	1.0560 [*]	.19438	.000	.5856	1.5264			
	B,B/C	A,A/B	6695 [*]	.15242	.000	-1.0328	3062			
		C-F	.3865	.20156	.144	0999	.8730			
	C-F	A,A/B	-1.0560*	.19438	.000	-1.5264	5856			
		B,B/C	3865	.20156	.144	8730	.0999			

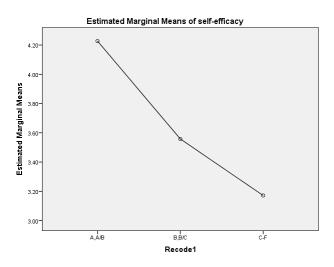
Based on observed means.

The error term is Mean Square(Error) = .596.

*. The mean difference is significant at the .05 level.

Homogeneous Subsets

self-efficacy						
			Subset			
	Recode1	N	1	2		
Tukey HSD ^{a,b,c}	C-F	28	3.1714			
	B,B/C	44	3.5580			
	A,A/B	51		4.2275		
	Sig.		.076	1.000		


Means for groups in homogeneous subsets are displayed. Based on observed means.

The error term is Mean Square(Error) = .596.

a. Uses Harmonic Mean Sample Size = 38.437.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.c. Alpha = .05.

Profile Plots

Explore

	Descriptiv	es		
			Statistic	Std. Error
Residual for selfeffi	Mean	-	.0000	.06904
	95% Confidence Interval for	Lower Bound	1367	
	Mean	Upper Bound	.1367	
	5% Trimmed Mean		.0134	
	Median		.1725	

Variance	.586	
Std. Deviation	.76567	
Minimum	-1.97	
Maximum	1.83	
Range	3.80	
Interquartile Range	1.20	
Skewness	362	.218
Kurtosis	541	.433

Extreme Values

			Case Number	Value
Residual for selfeffi	Highest	1	108	1.83
		2	92	1.43
		3	21	1.24
		4	22	1.24
		5	64	1.23
	Lowest	1	60	-1.97
		2	7	-1.83
		3	53	-1.56
		4	79	-1.37
		5	111	-1.36 ^a

a. Only a partial list of cases with the value -1.36 are shown in the table of lower extremes.

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Residual for selfeffi	.111	123	.001	.967	123	.004	

a. Lilliefors Significance Correction

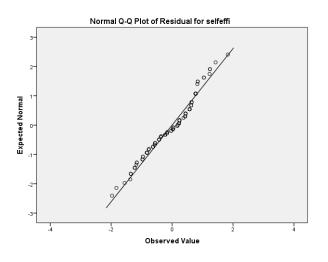
Residual for selfeffi

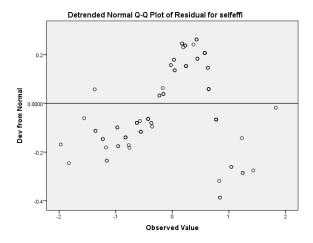
Residual for selfeffi Stem-and-Leaf Plot

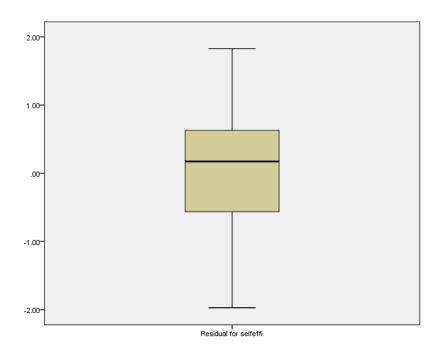
Frequency Stem & Leaf 2.00 -1.89 .00 -1. -1.5 1.00 7.00 -1. 2223333 3.00 -1.111 11.00 -0.88888899999 -0.666677 6.00 -0.4444455555 11.00 -0. 222333 6.00 -0.001111 6.00 10.00 0.000001111 0.2222222223 11.00 17.00 0.4444444455555555 22.00 0.6666666677777777777777777777 3.00 0.888 2.00 1.00

Stem width: 1.00 Each leaf: 1 case(s)

1.222


1.4 1.


1.8


3.00 1.00

.00

1.00

Oneway

liklihood of cheating to occur

Descriptives

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
4.0	20	3.6000	1.55259	.34717	2.8734	4.3266	1.00	5.50
3.5-3.9	36	3.8056	1.37984	.22997	3.3387	4.2724	1.00	6.00
3.0-3.4	27	3.7593	1.46347	.28164	3.1803	4.3382	2.00	6.00
2.5-2.9	21	3.4048	1.40195	.30593	2.7666	4.0429	1.50	6.50
<2.5	16	4.2500	1.30384	.32596	3.5552	4.9448	2.00	6.50
Total	120	3.7500	1.42014	.12964	3.4933	4.0067	1.00	6.50

Test of Homogeneity of Variances

liklihood of cheating to occur

Levene Statistic	df1	df2	Sig.	
.763	4	115	.551	

ANOVA

			Sum of		Mean		
			Squares	df	Square	F	Sig.
Between	(Combin	ed)	7.066	4	1.767	.872	.483
Groups	Linear Term	Unweight ed	1.539	1	1.539	.760	.385
		Weighted	.827	1	.827	.408	.524
		Deviation	6.239	3	2.080	1.027	.384
Within Grou	ps		232.934	115	2.026		
Total			240.000	119			

Contrast Coefficients									
		gpa regroup							
Contrast	4.0	4.0 3.5-3.9 3.0-3.4 2.5-2.9 <2.5							
1	1.5	1.5	-1	-1	-1				
2	1	1	1	-1.5	-1.5				
3	1	1	1	1	-1				

	Contrast Tests								
		Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)		
liklihood of cheating to	Assume equal variances	1	3057	.80779	378	115	.706		
occur		2	3173	.85698	370	115	.712		
		3	10.3196 ^a	.67499	15.289	115	.000		
	Does not assume equal	1	3057	.81814	374	78.495	.710		
	variances	2	3173	.83809	379	69.350	.706		
		3	10.3196ª	.67274	15.340	89.953	.000		

a. The sum of the contrast coefficients is not zero.

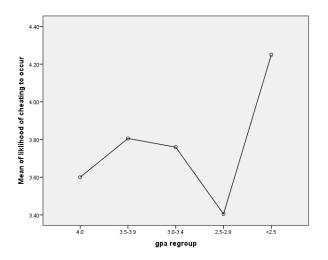
Post Hoc Tests

Dependent Var	iable: liklihoo	od of cheating to occ	cur				
	4		Mean			95% Confide	ence Interval
	(I) gpa	(J) gpa	Difference (I-	Std.		Lower	Upper
	regroup	regroup	J)	Error	Sig.	Bound	Bound
Tukey HSD	4.0	3.5-3.9	20556	.39691	.985	-1.3056	.8945
		3.0-3.4	15926	.41987	.996	-1.3230	1.0044
		2.5-2.9	.19524	.44467	.992	-1.0372	1.4276
		<2.5	65000	.47736	.653	-1.9730	.6730
	3.5-3.9	4.0	.20556	.39691	.985	8945	1.3056
		3.0-3.4	.04630	.36233	1.000	9579	1.0505
		2.5-2.9	.40079	.39079	.843	6823	1.4839
		<2.5	44444	.42762	.837	-1.6296	.7407
	3.0-3.4	4.0	.15926	.41987	.996	-1.0044	1.3230
		3.5-3.9	04630	.36233	1.000	-1.0505	.9579
		2.5-2.9	.35450	.41409	.912	7932	1.5022
		<2.5	49074	.44901	.810	-1.7352	.7537
	2.5-2.9	4.0	19524	.44467	.992	-1.4276	1.0372
		3.5-3.9	40079	.39079	.843	-1.4839	.6823
		3.0-3.4	35450	.41409	.912	-1.5022	.7932
		<2.5	84524	.47228	.385	-2.1542	.4637
	<2.5	4.0	.65000	.47736	.653	6730	1.9730
		3.5-3.9	.44444	.42762	.837	7407	1.6296
		3.0-3.4	.49074	.44901	.810	7537	1.7352
		2.5-2.9	.84524	.47228	.385	4637	2.1542
Games-Howel	1 4.0	3.5-3.9	20556	.41643	.987	-1.4017	.9906
		3.0-3.4	15926	.44705	.996	-1.4365	1.1180
		2.5-2.9	.19524	.46273	.993	-1.1294	1.5199
		<2.5	65000	.47621	.654	-2.0215	.7215

Multiple Comparisons

		-			-	-
3.5-3.9	4.0	.20556	.41643	.987	9906	1.4017
	3.0-3.4	.04630	.36361	1.000	9796	1.0722
	2.5-2.9	.40079	.38273	.832	6906	1.4922
	<2.5	44444	.39892	.798	-1.6006	.7117
3.0-3.4	4.0	.15926	.44705	.996	-1.1180	1.4365
	3.5-3.9	04630	.36361	1.000	-1.0722	.9796
	2.5-2.9	.35450	.41583	.912	8282	1.5372
	<2.5	49074	.43078	.785	-1.7300	.7485
2.5-2.9	4.0	19524	.46273	.993	-1.5199	1.1294
	3.5-3.9	40079	.38273	.832	-1.4922	.6906
	3.0-3.4	35450	.41583	.912	-1.5372	.8282
	<2.5	84524	.44704	.342	-2.1335	.4430
<2.5	4.0	.65000	.47621	.654	7215	2.0215
	3.5-3.9	.44444	.39892	.798	7117	1.6006
	3.0-3.4	.49074	.43078	.785	7485	1.7300
	2.5-2.9	.84524	.44704	.342	4430	2.1335

Homogeneous Subsets


liklihood of cheating to occur				
			Subset for alpha	
			= 0.05	
	gpa regroup	N	1	
Tukey HSD ^{a,b}	2.5-2.9	21	3.4048	
	4.0	20	3.6000	
	3.0-3.4	27	3.7593	
	3.5-3.9	36	3.8056	
	<2.5	16	4.2500	
	Sig.		.282	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 22.229.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Means Plots

Univariate Analysis of Variance

Between-Subjects Factors				
		Value Label	Ν	
gpa regroup	1.00	4.0	20	
	2.00	3.5-3.9	36	
	3.00	3.0-3.4	27	
	4.00	2.5-2.9	21	
	5.00	<2.5	16	

Tests of Between-Subjects Effects

Dependent Variable: liklihood of cheating to occur					
	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.
Corrected Model	7.066 ^a	4	1.767	.872	.483
Intercept	1574.580	1	1574.580	777.375	.000
gpa2	7.066	4	1.767	.872	.483
Error	232.934	115	2.026		
Total	1927.500	120			
Corrected Total	240.000	119			

a. R Squared = .029 (Adjusted R Squared = -.004)

Estimated Marginal Means

1. Grand Mean

Dependent Variable: liklihood of cheating to occur

		95% Confidence Interval		
Mean	Std. Error	Lower Bound	Upper Bound	
3.764	.135	3.497	4.031	

2. gpa regroup

Dependent Variable: liklihood of cheating to occur

			95% Confidence Interval	
gpa regroup	Mean	Std. Error	Lower Bound	Upper Bound
4.0	3.600	.318	2.970	4.230
3.5-3.9	3.806	.237	3.336	4.275
3.0-3.4	3.759	.274	3.217	4.302
2.5-2.9	3.405	.311	2.790	4.020
<2.5	4.250	.356	3.545	4.955