
Pilot Study Research Proposal 

    It is vital for prospective elementary teachers to acquire a solid foundation of 

mathematical knowledge in order to successfully navigate the path to the classroom and to 

successfully perform once they have entered their professional teaching life. Teacher training 

programs often require prospective teachers to demonstrate proficiency in mathematics by 

successful completion of mathematics content knowledge courses. In addition to the required 

coursework, professional licensure commonly requires candidates to pass tests of content 

knowledge  Of course, the primary and ultimate goal of building mathematics content knowledge 

in prospective elementary teachers is to provide them with the tools and skills that they will need 

to support the acquisition of mathematical knowledge and skill in their future students (Ball, 

1990; Fennema & Franke, 1992; Hill, Rowan, & Ball, 2005).   

     A longitudinal study (Ball, 1990) of 252 preservice teacher candidates at the point in 

which they entered formal teacher education found that many emerged from their content 

coursework with mathematics skills that were limited to discrete procedural processes 

disconnected from larger mathematical concepts. In addition, many of the prospective teachers 

focused on procedures and rules because they viewed the process of doing mathematics as 

simply following set procedures step-by-step to generate answers: that mathematics itself was an 

arbitrary collections of facts and rules to be remembered and employed. The author argued that 

the data suggested “that the mathematical understandings that prospective teachers bring are 

inadequate for teaching mathematics for understanding,” (Ball, 1990, p. 464). 

     The purpose of this pilot study is to gain understanding of the learning processes, 

experiences, and depth of knowledge of undergraduate students in a mathematics content course 

designed for students with a designated elementary education emphasis. The study will explore 
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the acquisition of procedural knowledge skills, specifically depth, fluency, and influence on 

conceptual knowledge. The research questions are:  

 What are the experiences of students of varying achievement levels within a mathematics 

content course designed for undergraduate elementary education majors?  

 In what way do undergraduate students in a mathematics content course for elementary 

education majors demonstrate the depth of their procedural knowledge gained throughout 

the course? 

Literature Review 

     In order to study mathematics understanding and learning, a conceptual framework with 

definitions and meanings that are clearly understood within the mathematics research community 

must be established.  Research can be designed around the framework, outcomes can be 

measured according to the operationalization of the components of the framework, and results 

can be understood within a shared conceptualization of the components. A well established and 

often used framework parses mathematical knowledge into two domains: procedural knowledge 

and conceptual knowledge.  

The Conceptual and Procedural Knowledge Framework 

     The conceptual and procedural knowledge framework was defined by Hiebert and 

Lefevre (1986) in their seminal article to provide a useful way for researchers to understand 

student learning processes.  They acknowledged that the relationship between procedural 

knowledge and conceptual knowledge was not yet well understood, and that often mathematics 

knowledge may be an inseparable combination of both forms of knowledge.  In spite of this, they 

argued that distinguishing types of knowledge would provide a way to understand the failure or 

success of building mathematics understanding.   
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     Hiebert and Lefevre (1986) define conceptual knowledge as a connected web of 

knowledge: a network of linked relationships that are as important as the discrete elements.  The 

web of knowledge is conceptual only if the learner recognizes the relationships between 

elements.  Conceptual knowledge not only describes the connections between known elements, it 

also describes the connections made between existing knowledge and newly acquired 

knowledge.  The context is created by the network of relationships, allowing the learner the 

freedom to apply existing knowledge to novel problems. 

     Procedural knowledge as described by Hiebert and Lefevre (1986) is the use of the 

formal language and the symbolic representation system of mathematics.  Algorithms or rules are 

used to complete tasks with an awareness of only surface features.  The knowledge of the 

meaning of the processes is not accessed or necessary for successful completion of tasks.  Step-

by-step instructions prescribe how to complete tasks.  These tasks may then be sequenced into 

superprocedures that incorporate lower level subprocedures.  Procedural knowledge allows 

students to solve complex superprocedures as a chain of prescriptions without knowledge of the 

meaning of the task.   

     Three studies use the conceptual and procedural knowledge framework as defined by 

Hiebert and Lefevre (1986) to look at fractional knowledge in preservice teachers (Cheng-Yao, 

2010, Lin et al, 2013; Rayner, Pitsolantis, & Osana, 2009). Fractional knowledge was 

investigated because of the complexity of the topic, and the difficulties that preservice teachers 

reportedly have had with knowledge of fractions.  A comparison of the results across all three 

studies reveals procedural knowledge scores that are higher than conceptual knowledge scores. 

Using this framework, consistently procedural scores were higher than conceptual scores 

whether assessing for comparison to other groups (Lin et al, 2013; Cheng-Yao, 2010) or 
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assessing for comparison to another variable (Rayner, Pitsolantis, & Osana, 2009).   All three 

studies used purely quantitative analysis which did not allow for feedback by participants on 

their thinking processes as they solved problems.  Consequently it is impossible to determine 

whether the participants made connections that were not demonstrated in the test results: whether 

they solved problems by rote processes or made choices driven by an underlying understanding 

of the concepts involved (Star, 2005).   

Comparison of these studies. In this group of studies procedural knowledge was 

operationalized as the ability to solve algorithmic problems, and conceptual knowledge was 

demonstrated by the ability of the participants to verbalize their understanding.  Two of the 

studies (Cheng-Yao, 2010; Rayner, Pitsolantis, & Osana, 2009) required the participants to 

demonstrate conceptual knowledge in a language rich environment.  In their definition of 

conceptual knowledge Hiebert and Lefvre (1986) do not in any way define conceptual 

knowledge as the learner’s ability to verbalize mathematical constructs.  When discussing the 

difference between procedural and conceptual knowledge they describe story problems as 

conceptual and the number sentences as procedural, not as definitive, but as illustrative.   

Verbal articulation of mathematical concepts may demonstrate conceptual understanding, 

but does the absence of a verbal response imply lack of conceptual understanding? The 

somewhat simplistic application of Hiebert and Lefevre’s (1986) framework in these studies does 

not take into account the intersection and influence that one type of knowledge may have on the 

other.  For all three studies the ability of the participant to solve equations was used only to 

assess procedural knowledge even when participants wrote explanations of their processes next 

to their solutions (Lin et. al., 2013).  Though all three studies used pencil-and-paper tests, there 

was no provision to gather data on participants conceptual understanding that may have been 
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embedded in their procedural work.  When conceptual understanding was only tested by asking 

participants to create scenarios that would embody given mathematical expressions, conceptual 

theoretical mathematical understanding that may have been present but not applicable in a real-

world context was not accessed or assessed. 

The Relationship between Procedural Knowledge and Conceptual Knowledge 

     There is a tacit belief in the mathematics education research community that conceptual 

knowledge that can be articulated by the learner with normal language is a higher, more valuable 

form of knowledge than algorithmic procedural knowledge.  This is position was not supported 

by Hiebert and Lefevre (1986).  Though the oft cited article may be responsible for the familiar 

division of mathematical knowledge into two distinct types, the authors discuss at length the 

relationships between procedural knowledge and conceptual knowledge arguing that competence 

in mathematics relies on the “significant, fundamental relationships between conceptual and 

procedural knowledge.” (paragraph 32).   

     In a review of the literature on procedural and conceptual knowledge (Rittle-Johnson, 

Schneider, & Star 2015), the authors explored the relationship between the two types of 

knowledge.  They found that the broad agreement that conceptual knowledge supports 

procedural knowledge has resulted in ample research on the conceptual-then-procedural 

sequence of instruction.  Consequently, though there is evidence that relationships between the 

two forms of knowledge are often bidirectional, there has been little research on the effect of 

presenting procedural instruction before teaching conceptual understanding.  The authors 

conclude that “the belief that procedural knowledge does not support conceptual knowledge is a 

myth.” (p.  594). 
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     Three studies explored the effect of sequencing instruction between procedural skill and 

conceptual knowledge on the development of conceptual knowledge and procedural 

knowledge.  The first (Rittle-Johnson & Alibali, 1999), a quasi-experimental study of fourth-

grade students, presented compelling evidence of the possible iterative nature of the supportive 

interplay between conceptual knowledge and procedural knowledge. After completing a paper-

and-pencil pretest, students were randomly assigned to either conceptual instruction, procedural 

instruction, or no instruction (control).  The conceptual-instruction group instruction consisted of 

presentation of a problem and then being told that the amounts before the equals sign needs to 

equal the amount after it, meaning that the numbers need to add up to the same amount on both 

sides.  No instruction was given on procedure.The procedural-instruction group was presented 

with a problem and the children were taught grouping procedures to solve.   Two cycles of 

lessons followed by assessments were given to both instruction groups.  A posttest of problems 

identical to the pretest was administered.   Performance on transfer of knowledge to as a measure 

of conceptual knowledge was assessed by testing student performance on unfamiliar procedures. 

    Children who received instruction improved more than children who did not receive 

instruction.  Most children from both instructions groups used correct procedures on the 

posttest.  Procedurally instruction children used the instructed procedure on all posttest 

problem.  Children from the conceptual-instruction group used multiple types of procedures, 

confirming that the conceptual instruction did not directly teach a specific procedure.  Children 

who received procedural instruction increased their conceptual understanding.  Children in the 

two treatment groups solved an equivalent number of problems correctly on the posttest. 

Children who were taught procedurally did not attempt to solve problems with minor variations 

in surface features.  The authors state that these findings suggest that children may benefit most 
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from conceptual instruction that helps them to invent correct procedures on their own.  It is 

interesting to note that the conceptual instruction in this study was an explanation of the meaning 

of the equals sign.  No real-world connections were made and all of the instruction that the 

children received was represented in the presented equation.   

     The second study was an experimental study that explored the effect of organizing 

arithmetic fact practice around equivalent practice (McNeil et al., 2012) on children ages seven 

through nine, examining the structure of early input and the role it may have in shaping 

children’s understanding of fundamental mathematics concepts (operations on the left of the 

equals sign, equals sign means to do something).  The authors chose to study the concept of 

mathematical equivalence because they state that it is “one of the most fundamental concepts in 

mathematics.” (p.  11).  The authors hypothesized that arithmetic practice that is organized by 

equivalent sums will lead children to construct a better understanding of math equivalence than 

practice that is not organized by equivalent sums.   

     The overall design was a posttest-only randomized experiment.  Randomization occurred 

at the individual level with each child randomly assigned to the condition of equivalent values 

with practice problems grouped and presented by equivalent values, the condition of a shared 

addend with practice problems grouped iteratively by shared addend, or no extra practice over 

and above ordinary school homework.  Three practice sessions one-on-one with a tutor were 

given with paper-and-pencil homework assignments between each session.  A posttest was given 

to assess their understanding of equivalence and computation fluency.  Children in the no 

practice condition were then assigned to either of the two practice conditions.  This subset of 

children participated in a randomized experiment with a pretest, intervention, and follow 

up.  Finally all children receive post-test assessment.  The larger experiment was a posttest-only 

https://drive.google.com/file/d/1WlxVW-0gYbZiFP3OPWqavpJKllgF_NXg/view


randomized experiment, with random assignment of individuals.  The sub-experiment was a 

pretest-intervention-posttest design with random assignment of individuals. 

The posttest assessment of all children to measure their understanding of math 

equivalence consisted of math equivalence equations, equation encoding by reconstructing math 

equivalence problems after viewing for a set period of time, and defining the equal sign by 

responding to a set of questions about the name and possible meanings for the equal sign. A 

follow-up assessment of the equivalence problems was given with the children instructed to 

make each side of the equal sign the same amount.  If the child gave the correct answer the tutor 

gave positive feedback.  If the child provided an incorrect number the tutor, using a script that 

emphasized the equal value of each side, provided the child with the correct answer.  The 

purpose was to examine practice conditions on children’s openness to learn from brief 

instruction. 

     Pretest scores were poor overall, with most children or all of the equations correctly. 

Children in the condition of equivalent values demonstrated better understanding in both 

problem solving and encoding performance than children in the other two conditions.  Children 

in the equivalent values condition were more likely to define the equal sign relationally.  The 

authors state that the results that organizing arithmetic facts into conceptually related groupings 

may improve children’s understanding of mathematical equivalence.  Performance on the follow-

up assessment was still low with children in the equivalent values condition more likely than 

children in the iterative condition to solve correctly. Children in the pretest-intervention-follow 

up group who received the equivalent values practice were more likely than those who received 

the iterative practice to solve equations correctly.  These children performed significantly better 

than the children who were not given the pretest.  The authors state that this result suggests that 



practice organized by equivalent values may provide more benefit to children who have been 

previously exposed to math equivalence problems. 

     The third study was an an experimental mixed method study of 72 seven and eight year 

olds that investigated the effect of problem solving practice on learning (Canobi, 2009) and the 

interactions between conceptual and procedural knowledge.  The study was designed to assess 

whether there is an iterative relationship between conceptual and procedural 

knowledge.  Procedural knowledge is defined as the skills required to solve individual 

mathematical problems.  The author states that exploring children’s self-reported procedures 

with evidence of their problem-solving accuracy provide an accurate characterization of their 

procedural skills.  Conceptual understanding is defined as knowledge about the underlying 

unifying principle of the structure of the problem. The author expected that highlighting 

conceptual relationships between problems through sequencing would increase procedural 

skill.  Additionally, it was predicted that executing procedures to solve problems would improve 

children’s report on conceptual relations between problems.  It was anticipated that children’s 

initial procedural skills would predict the level of conceptual advances made as a result of 

procedural practice.   

The children were randomly assigned to either a conceptually sequenced condition, a 

randomly ordered condition, or a no-practice condition.  Procedural and conceptual knowledge 

were tested before and after a practice phase.  Participants were given a computer-based 

problem-solving task pretest of whole number addition and subtraction problems that allowed 

them to view the previous problem with the correct answer as they solved each problem.  A 

second group of test problems consisted of children watching a puppet solve a problem using 

counters, and then responding to an interviewer about whether a the puppet could solve an 
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additional problem using the same counters.  After each problem the children were given 

feedback pointing out the nature of the relationship between the current problem and the 

previous problem.  Children judged the commutative, subtraction complement, or identity 

relationship with the previous problem.   

Practice was given randomly.  Children received either conceptually sequenced 

worksheets, randomly ordered practice, or no practice as a control group.  The sequenced 

problems were presented in conceptually sequenced pairs.  This was expected to maximize 

opportunities to notice conceptual relations between problems as they executed problem-solving 

procedures.  The randomly ordered practice condition was to provide equivalent practice with 

less obvious conceptual relationships.  The no-practice control group completed 

nonmathematical worksheets.  A posttest with identical procedures to the pretest was given. 

Children’s reporting on conceptually sequenced problems was used as a conceptual measure and 

reporting on randomly order problems was used as a measure of procedural knowledge. 

Procedural practice of randomly sequenced problems improved accuracy.  Conceptual 

sequencing of practice problems enhanced children’s ability to extend their procedural skills into 

new unpracticed problems.  In addition, well-structured practice led to improvement in children’s 

ability to identify and report on conceptual relationships between problems.  As anticipated, the 

initial levels of procedural knowledge predicted the conceptual knowledge advances that the 

participants made.  The author argues that these findings suggest that there is an iterative process 

between the development of both conceptual and procedural knowledge in children's addition 

and subtraction skills.  The pairing of practice problems appeared to allow the participants to 

consider the relationship between the problems.  The experience of solving practice problems 

that were ordered to make underlying concepts more obvious appeared to allow the children to 
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apply their improved problem-solving skills to new unpracticed addition and subtraction 

problems.  In comparison, the children who completed worksheets with randomly ordered 

problems only increased their scores on previously presented problems. 

Children were able to verbalize key addition and subtraction concepts even though the 

intervention only involved asking the children to solve problems using their preferred problem-

solving procedures.  The author found that children’s initial procedural skills influenced their 

ability to make conceptual inferences as a result of procedural practice (iterative cycle).  The 

author argues that when children know answers to problems they have a greater capacity to 

notice the principles that link the problems together, especially when the problems are presented 

in ways that make the links overt.  Because these children do not need to focus on computational 

requirements, they are able to make discoveries about the structure of the domain. This study 

was limited to young children and addition and subtraction processes.  

Comparison of these studies. The three preceding studies defined conceptual knowledge 

as an understanding of the underlying mathematical principles present in presented equations. 

The authors of the first (Rittle-Johnson & Alibali, 1999) and third (Canobi, 2009) studies 

describe the need to reach beyond the effect that procedural and conceptual knowledge have on 

each other into an exploration of how the effect occurs.  While the evidence on the iterative 

nature of the two forms of knowledge is compelling in these studies of children, it would be 

useful to determine the nature of their interaction in other populations.   

While I previously stated that Hiebert and Lefevre (1986) do not define conceptual 

knowledge as verbal knowledge, they do argue that for procedural knowledge to include 

conceptual knowledge it must contain within it, for the learner, a connection to the real world.  In 

this regard, the operationalization of conceptual knowledge in these three studies (Canobi, 2009; 

https://drive.google.com/open?id=1ufmPoe2DSIkfPtd-pdXXJZu64Tl6cp1j
https://drive.google.com/open?id=1mmui8imM9V_pR9J7LGBC4zjKCZLdbtye
https://drive.google.com/open?id=1mmui8imM9V_pR9J7LGBC4zjKCZLdbtye


McNeil et al., 2012; Rittle-Johnson & Alibali, 1999) was a complete departure from Hiebert and 

Lefevre’s conceptual and procedural knowledge framework. In all three studies conceptual 

knowledge was measured as an understanding of the mathematical concepts represented by 

procedural work. From this vantage point the three studies are were fact completely situated in 

the procedural knowledge realm, and may in fact be studies of deep procedural knowledge (Star, 

2005). 

Knowledge Type and Quality 

     In a response to Hiebert and Lefevre’s (1986) bifurcation of mathematical knowledge 

into conceptual and procedural types, Star (2005) redefined conceptual knowledge as knowledge 

of concepts, principles, and definitions; and procedural knowledge as knowledge of procedures, 

algorithms, and the sequence of steps used in problem solving.  He argued that contrary to the 

common perception of procedural knowledge as superficial and rote and the perception that 

conceptual knowledge is knowledge that is known deeply, that both types of knowledge can be 

either superficial or deep or anything in between.  He described the depth of knowledge as 

knowledge quality. 

Using this alteration of the conceptual/procedural framework, the following two studies 

focus on flexibility in procedural knowledge.  Researchers in both studies interpret flexibility in 

procedural processes, or knowledge of multiple strategies, as an indication of deep procedural 

knowledge.  Looking at procedural knowledge without reference to conceptual acknowledges the 

importance of procedural knowledge as valuable in and of itself (Star, 2005).  The participants of 

the first of these two studies were undergraduates.  The participants in the second study were 

grade school students.   
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The first of these two studies (Maciejewski & Star, 2016) was a teaching intervention 

designed to promote flexibility in procedural knowledge in first year undergraduate calculus 

students.  The researchers sought to determine not only if procedural flexibility could be 

developed, but also if it resembled expert-like procedural performance. The design was quasi-

experimental pretest/post test.  Two sections of an introductory calculus course taught by the 

same instructor were selected for the experimental study.  A pretest on differentiation was 

given.  After receiving a lesson that contained a traditional sequence of instruction on 

procedures, the control section was given a typical worksheet for homework.  The treatment 

section was given a worksheet that specified two approaches for solving each assigned problem 

and were asked to describe which method they prefered.  The homework assignment was 

followed by a readministration of the pretest as a post test. 

     An analysis of the data found that here were no significant differences in the sections’ 

score averages.  Both groups scores improved on the posttest.  The treatment group used a 

greater variety of strategies than the control group.  The authors found that many of students 

chose to use processes that took longer to solve possibly because of familiarity with the 

form.  Even though some students chose to use longer processes, the researchers determined that 

the treatment group moved closer to expert-like performance.  The researchers felt that as 

novices the students had not yet developed adequate problem classification schema and that they 

would become more efficient with more experience.   

     The authors concluded that it is possible to use an instructional task to support the 

development of undergraduate students’ flexible use of procedures.  Because the control group 

did not demonstrate flexibility after practice, the authors determined that an activity that 

prompted critical reflection by presenting tasks that prompt students to resolve questions in 



different ways and allow for the comparison of different solutions may support the development 

of deep procedural knowledge. 

     The second study (Lamb, Bishop, Philipp, Whitacre, & Schappelle, 2016) used clinical 

interviews to investigate the relationship between student flexibility in procedural problem 

solving and mathematics performance in students grades 2, 4, 7, and 11.  The researchers sought 

to determine the degree to which flexible ways of reasoning influenced performance on integer 

problems.  The wide grade span was chosen to cover a wide range of student learning 

experiences: from those who had not yet received school-based integer instruction to students 

who were enrolled in precalculus or calculus courses and therefore deemed to be successful high 

school mathematics students. 

     Individual clinical interviews were conducted and videotaped at the students’ school 

sites.  The interviews were standardized and all students were asked to complete the same 25 

open number sentences.  Interviews were coded both for underlying reasoning and for 

correctness.  Five broad categories and 41 subcodes provided detail into student’s specific 

strategies.  The five categories broken down into ways of reasoning: order-based, analogy-based, 

computational, formal, and developmental.  Flexibility was measured by the variety of ways that 

students used to solve integer-arithmetic tasks.  Proficiency with a particular way of reasoning 

was demonstrated when a student used it three or more times.  The number of ways that students 

used ways of reasoning that they were proficient in was the measure of flexibility.  

Case studies were performed on three 7th grade students who exemplified the 

relationship between flexibility and accuracy.  The first student chosen completed 32% of the 

open number sentences correctly.  The second student completed 64% of the problems 

correctly.  The third case completed 100% of the problems correctly. The researchers had found 
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that the seventh grade students had the greatest spread in flexibility.  Eighty-five percent of 11th 

graders had used 3 or 4 methods.  Flexibility scores had correlated positively with 

performance.  This result also held across the case studies.  The first and second cases used one 

type of reasoning almost exclusively which limited their options for solving problems.  Though 

each of them focused on different forms of reasoning, the fact that each student presented one 

way of reasoning appeared to negatively influence success.  The third case, who had completed 

every open number sentence correctly, flexibly used a wide range of strategies on the problems 

and appeared to choose strategies that corresponded with the underlying structure of the 

sentence. 

     Case studies provided insight into the relationship between flexibility and performance 

on open number sentence problems.  Across all age groups the correlation between flexibility 

and performance held.  The authors concluded that students who rely on a single way of 

reasoning may be impeded in their success because of their limited flexibility and that multiple 

ways of reasoning promotes successful performance.  For every participant group the correlation 

between flexibility and accuracy held; more flexible students were more successful. 

     Comparison of these studies. Though both studies (Lamb et. al., 2016; Maciejewski & 

Star, 2016) addressed flexibility in procedural knowledge, the approaches were very 

different.  Though neither study used the language of the conceptual and procedural knowledge 

framework, both studies explored the impact of deep procedural knowledge (Star, 2005) 

exemplified by procedural flexibility.  Depth of conceptual knowledge was implied in the 

Maciejewski and Star (2016) study within the discussion of students’ process of which method to 

use to solve problems for those students who used multiple methods.  In the Lamb et. al. (2016) 

study both the clinical interviews and the more in-depth case study interviews provided insight 
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“Instrumental understanding” can be thought of as knowing the rules and procedures without understanding why those rules or procedures work. Students who have been taught instrumentally can perform calculations, apply procedures… but do not necessarily understand the mathematics behind the rules or procedures.


“Relational understanding”, on the other hand, can be thought of as understanding how and why the rules and procedures work.  Students who are taught relationally are more likely to remember the procedures because they have truly understood why they work, they are more likely to retain their understanding longer, more likely to connect new learning with previous learning, and they are less likely to make careless mistakes.



into the procedural and conceptual understanding of the participants.  Participant responses 

allowed the researchers to determine not only the presence of reasoning types but also the 

manner in which they were chosen.  The interview process uncovered participants’ procedural 

and conceptual knowledge, whether solutions were pursued through rote processes or driven by 

connected knowledge (Hiebert and Lefevre, 1986) and the depth or lack of depth of the 

participants’ procedural and conceptual knowledge (Star, 2005). 

The Exploration of Knowledge Embedded in Mathematical Symbols 

     The studies that explored the iterative relationship between conceptual and procedural 

knowledge (Canobi, 2009; McNeil et al., 2012; Rittle-Johnson & Alibali, 1999) and procedural 

flexibility (Lamb et. al., 2016; Maciejewski & Star, 2016) examined participants’ conceptual 

knowledge by analyzing their responses to the symbolic representation of mathematical 

constructs. Across these studies conceptual knowledge was seen as understanding of the 

underlying mathematical constructs represented by equations and mathematical expressions. 

Whether assessing procedural or conceptual knowledge, the focus was on the symbolic 

representations. The position of these studies was that student work traditionally described as 

procedural (Heibert and Lefevre, 1986) potentially held conceptual understanding that 

manifested through transfer of knowledge to novel problems (Canobi, 2009; Rittle-Johnson & 

Alibali, 1999), or description of the underlying meaning of mathematical symbols (Canobi, 

2009; Lamb, et. al., 2016; McNeil et al., 2012) 

Pilot Study Design, Methods, and Procedures 

     For the purposes of this study, procedural knowledge will be defined using Star’s (2005) 

framework of knowledge type and quality.  Conceptual knowledge will be defined using Heibert 

and Lefevre’s (1986) description of the relationships between existing knowledge and new 
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knowledge and the ability to apply existing knowledge to novel problems. The focus will be 

primarily on the development of procedural knowledge and the impact of that knowledge on the 

acquisition of further knowledge and conceptual understanding by undergraduate students in an 

elementary education mathematics content course. 

If the primary strength of undergraduate mathematics knowledge is in procedural 

knowledge, then it makes sense to use the existing procedural knowledge as a tool to build 

conceptual understanding. Rather than perceiving shallow procedural knowledge of 

undergraduate students as a liability, perhaps it is simply the starting point, the building blocks, 

that can be used to create deep procedural knowledge by providing the opportunity for students 

to build the net of knowledge that interconnects the disparate parts of their existing mathematics 

understanding. Only a fragmented picture of students’ mathematical knowledge can be acquired 

using pretests, surveys, or interviews. Conducting an ethnography of this population as a 

participant-observer over the course of a semester will allow me to assemble a more complete 

understanding of their challenges, experiences, and successes relative to their procedural 

knowledge of mathematics. 

Research design and data collection.  

Ethnographic studies investigate cultures by examining interpersonal, social, and cultural 

aspects of the participants using ethnographic interviews and participant observation to gather 

data. There are three distinct elements of an ethnographic study. The first is the use of 

ethnographic research methods to gather the data, the second is the resulting data gathered as a 

participant observer, and the third is the interpretation of the data gathered (Shagrir, 2017).  

I will use Wolcott’s (2008) description of ethnographic research as experiencing, 

inquiring, and examining as the organizing framework for data collection. Experiencing will be 

https://drive.google.com/file/d/1GUvb8QtyqysylWx4JMJMKfwdlAtZODhQ/view


be accomplished by being present in the classroom to observe the day-to-day activities of the 

students. I will generate field notes of interactions between members of the class and record 

details that I see and hear (Wolcott, 2008). As a participant observer, my intent is to take an 

essentially passive role. Wolcott (2008) advised that the participant observer should become 

“only as involved as is necessary to obtain the information desired” (p. 49). Inquiring will take 

place through casual conversation, semi-structured and unstructured interviews, and questioning 

to clarify student understanding when opportunities arise. In addition to the observations 

gathered through experiencing, I will use field notes to record interactions with students and their 

comments and responses to clarifying questions. Responses to interviews will provide additional 

data. Examining will consist of an examination of the work generated by the students during the 

course, including student homework, student tests, and other student generated items. 

     Data analysis. Data analysis will use the constant comparative method (Eisenhart, 1988). 

Analysis will occur throughout the period of study as data is gathered. Triangulation will be used 

to compare categories and relationships across data. Theoretical explanations will develop 

through a recursive process of examination to develop an understanding that encompasses all of 

the data and provides a comprehensive picture of meanings of the students’ experience.  

Personal Biases. I will examine and explore my personal biases throughout this study. 

My beliefs about the role of procedural knowledge math student learning processes will affect 

my perspective on the data that I gather for this study. In order to proceed in the most objective 

way possible, I will examine my beliefs against the data that support or challenge those beliefs as 

a regular portion of my field notes. 

Limitations.  As a single observer in the class, data collected through observation will be 

limited to my perspective alone. The class that will be observed is credit bearing for the students 

https://books.google.com/books?id=nqAuhKBw8x0C&pg=PA46&source=gbs_toc_r&cad=4#v=onepage&q&f=true
https://mymasonportal.gmu.edu/bbcswebdav/pid-7122989-dt-content-rid-91143465_1/courses/81287.201770/Readings/eisenhart_1988.pdf
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and it is imperative that research activities do not negatively affect the achievement of students 

within the course. This circumstance may have unforeseen effects on my ability to gather data. 

Importance of the study. This study will add to the existing literature on elementary 

education undergraduates’ experiences in mathematics content courses, and will add to the body 

of work on research on the development of procedural knowledge. There is an identified need for 

in-depth studies of teachers as learners of mathematics (Mewborn, 2001). Star commented on the 

scarcity of research of procedural knowledge (2005). To my knowledge, there does not exist an 

ethnographic research study that examines the experience of undergraduates procedural learning 

within an elementary education mathematics content course. 

  

https://drive.google.com/open?id=1O8cQRJdN9p08HCN9_dM3oWq8r3Ubkc2m
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