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Designing a Mobile Mathematics Application for 

Prospective Elementary School Teachers 

As undergraduate students who intend to become elementary teachers prepare to enter 

their teacher training programs the literature indicates that the strength and the nature of their 

understanding of mathematics is unequal to the task that lies before them. This paper will discuss 

the state of mathematics knowledge of prospective preservice elementary teachers, students who 

have completed their regular undergraduate mathematics coursework but have not yet begun 

their professional training courses. If prospective preservice elementary teachers lack a strong 

foundation in fundamental mathematics, then they may not be able to develop the pedagogical 

knowledge that they will need to be effective mathematics educators. There are serious 

implications of this condition on their professional performance as teachers, possibly negatively 

impacting the potential mathematics achievement of their future students. 

Enlisting the affordances of mobile technologies to help close the gap between what these 

students know and what they need to know seems a natural fit.  Mobile devices are ubiquitous in 

this population and their always-on, always-handy, internet-connected condition gives them the 

potential to be a powerful tool. What is currently lacking is a mobile app that is designed to build 

the foundational mathematics knowledge that this population needs. The nature of that need and 

the current state of research into the uses and effectiveness of mobile phone applications will be 

discussed, and the implications for design and development will be explored. 

Mathematics Content Knowledge 

It seems obvious that teachers must be competent practitioners of mathematics if they are 

to have any chance of being effective teachers of mathematics to children. Yet research indicates 
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that the level of knowledge of mathematics in U.S. teachers is weak overall (Ball, 1990; 

Hembree, 1990). The effect of this pervasive weakness is teachers whose understanding lacks 

coherence (Ma, 1999). A review of research on teacher knowledge and teachers’ use of 

mathematical knowledge (Ball et al., 2001) found pervasive weaknesses in U.S. teachers’ 

understanding of mathematical ideas and relationships. Determining what constitutes the 

mathematics knowledge necessary for teaching is a complex process complicated by its 

multidimensional nature, making it difficult to pinpoint what skills and knowledge are present in 

effective teachers (Hill, Ball, and Schilling, 2008).  

To assess mathematics content knowledge it is necessary to define what mathematics 

content knowledge is and what specializations are desirable for prospective teachers. It is defined 

in many ways in the literature, both in terms of the nature of the mathematics understood by the 

learner and in how mathematics knowledge is measured to determine the adequate levels of 

understanding necessary to be an effective teacher. Mathematics knowledge was split into 

procedural knowledge and conceptual knowledge in Hiebert and Lefevre’s (1986) landmark 

article that has been used and is still in use in mathematics education research to define 

mathematics knowledge types. More recent research points to a integration of procedural 

knowledge and conceptual knowledge with indications that each type when parsed contributes to 

the strength of the other (Star & Newton, 2009). This general understanding of mathematics 

knowledge is further refined when looking at the mathematics knowledge that is recognized as 

crucial to the for effective mathematics instruction. Before they become teachers, they take part 

in teacher training. These students come to teacher training from their secondary and 

undergraduate mathematics courses.  

https://drive.google.com/open?id=1pP8QUxWWqeaf9LqwWkxqiUiiYLKZEWGN
https://drive.google.com/open?id=1vU2dDUb7-0PEY6hP2KZtBGaQLlZUzXVi
https://drive.google.com/open?id=1vU2dDUb7-0PEY6hP2KZtBGaQLlZUzXVi
https://drive.google.com/open?id=1AdbApG7Q1DYomfC6___TWKTJdZFVcDzb
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Teacher Knowledge 

It is unsurprising that the mathematical knowledge that an undergraduate prospective 

elementary teacher must acquire to adequately teach is more specialized than the mathematical 

knowledge of the general public. Mathematical knowledge for teaching falls into two categories: 

content knowledge (CK) and pedagogical content knowledge (PCK). These aspects of teacher 

knowledge were defined by Shulman (1986) in his landmark article that separated the two types 

of knowledge in a way that educational researchers still use to investigate teacher content 

knowledge.  Shulman defined content knowledge as “going beyond knowledge of the facts or 

concepts of a domain. It requires understanding the structures of the subject matter” (pg. 9). 

Content knowledge includes knowledge of the facts and procedures of mathematics and the 

understanding of the purpose and relationships within mathematics and beyond mathematics, 

containing both theory and practice. PCK is the specific forms of content knowledge related to 

how mathematics is taught. PCK includes alternate ways in which CK can be represented to 

make it understandable to students, knowledge of the preconceptions and misconceptions that 

students bring to the subject, and strategies for organizing student understanding. Shulman 

identified curricular knowledge as a third type of teacher knowledge that is beyond the scope of 

this paper. 

Research indicates that there is a historical and ongoing weakness in preservice teacher 

mathematics knowledge. A longitudinal study of CK (Ball, 1990) of 252 preservice teacher 

candidates at the point in which they entered formal teacher education found that, instead of the 

connected mathematics knowledge described by Shulman (1989), many emerged from their 

content coursework with skills that were limited to discrete procedural processes disassociated 

https://pdfs.semanticscholar.org/f29d/a5d8c806102b060e7669f67b5f9a55d8f7c4.pdf
https://drive.google.com/file/d/1pZ2DRlT-d41UPSrE6q8O3WmiJoPg7YGA/view
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from larger mathematical concepts. Many of the prospective teachers focused on procedures and 

rules because they perceived the process of doing mathematics as simply following set 

procedures step-by-step to generate answers: that mathematics itself was an arbitrary collection 

of facts and rules to be remembered and employed. The author argued that the data suggested 

“that the mathematical understandings that prospective teachers bring are inadequate for teaching 

mathematics for understanding,” (Ball, 1990, p. 464). A decade later, in spite of curriculum 

reforms and robust professional development programs, weakness in mathematics content 

knowledge had not improved. A review of research on teacher knowledge and teachers’ use of 

mathematical knowledge (Ball, Lubienski, & Mewborn, 2001) of studies that looked closely at 

teacher’ knowledge of multiplication, division, rational numbers, functions, geometry, and 

proofs found pervasive weaknesses in U.S. teachers’ understanding of mathematical ideas and 

relationships. 

In the early 2000s an effort was begun to develop measures that could empirically test 

mathematical content knowledge that teachers possess (Hill, Ball, & Schilling, 2004). The 

researchers sought to develop a construct that represented mathematical knowledge for teaching 

(MKT). They pilot tested numerous multiple-choice items intended to represent the mathematical 

knowledge used in teaching elementary mathematics with 1,552 elementary school teachers. 

Exploratory factor analysis found three underlying dimensions of MKT: knowledge of content in 

number concepts and operations, knowledge of content in patterns, functions, and algebra, and 

knowledge of students and content in number concepts and operations. In addition, they found 

that specialized knowledge included knowledge of specialized tasks specific to teaching and 

knowledge of students. They concluded that MKT consists of more than the knowledge of 

https://drive.google.com/open?id=1pP8QUxWWqeaf9LqwWkxqiUiiYLKZEWGN
https://drive.google.com/open?id=1HHR9wwE2-DtvOtucxSg3_VaLsgwyDybX
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mathematics held by a well-educated adult; there was evidence of more mathematical depth to 

teaching elementary school. They found that MKT was a multiple-dimensional construct that 

consisted of a strong knowledge of basic mathematics that provided a foundation for the 

specialized knowledge that teachers use to teach. The authors state that the additional knowledge 

may include teacher understanding of why mathematical statements are true and knowledge of 

multiple representations of mathematical ideas. 

As part of the ongoing development of measures to test MKT, Hill et al. (2008) 

developed a framework that refined Shulman’s (1989) division of teacher knowledge into 

subdomains (Figure 1).  It is important to note that the measure of MKT incorporates both 

subject matter with no knowledge of students or teaching entailed, and Shulman’s proposed 

PCK. The three portions of the oval under Subject Matter Knowledge include mathematics 

knowledge that does not include knowledge of students or teaching. Common content knowledge 

(CCK) is mathematics to be taught that used in professions or occupations. Specialized content 

knowledge (SCK) is the knowledge of how to represent mathematical ideas, and explanations or 

common rules and procedures. Horizon knowledge is an awareness of how mathematical topics 

are related over the span of mathematics (Zazkis & Mamolo, 2011). The three portions under the 

right side of the oval under Pedagogical Content Knowledge include knowledge of content and 

students (KCS), knowledge of content and teaching (KCT), and knowledge of curriculum.  

  

https://drive.google.com/open?id=1vU2dDUb7-0PEY6hP2KZtBGaQLlZUzXVi


 
6 

Figure 1. Domain map for mathematical knowledge for teaching (Hill et al., 2008). 

  

A study (Hill et al., 2008) focused specifically on the development of a measure of 

knowledge of content and students (KCS), a subset of PCK which is a subset of MKT, was 

conducted using a pretest/posttest design of 640 teachers attending a number and operations 

professional development course for elementary teachers. This was followed by interviews of 26 

K-6 teachers from three Midwestern school districts who were selected on the basis of either low 

or high CK scores. The researchers found that teachers relied both on familiarly with student 

error and on mathematical analysis to answer questions correctly. The multidimensionality 

demonstrated led to problems in measurement of KCS because researchers found that 

mathematical reasoning and knowledge could compensate for a lack of KCS leading to false 

https://drive.google.com/open?id=1vU2dDUb7-0PEY6hP2KZtBGaQLlZUzXVi
https://drive.google.com/open?id=1vU2dDUb7-0PEY6hP2KZtBGaQLlZUzXVi
https://drive.google.com/open?id=1vU2dDUb7-0PEY6hP2KZtBGaQLlZUzXVi
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positives on the measurement of KCS. Differentiation of the multidimensional aspects of the 

mathematical knowledge for teaching remained elusive.  

Though differentiated understanding of teacher knowledge was obscured by high levels 

of mathematical reasoning and knowledge in some participants, the participants’ ability to 

compensate for an absence of knowledge of students potentially may shed light on what 

foundational knowledge effective mathematics teachers possess. In the years since, Shulman 

(1989) defined the concept of mathematical knowledge that is specific to teaching, a large body 

of work investigating mathematics teacher knowledge has accumulated. The Hill, Ball, and 

Schilling (2008) subdivisions of Shulman’s SMK and PCK have become the most commonly 

used measures of teachers’ mathematical knowledge (Blömeke & Delaney, 2012). A 

meta-analysis of 60 research articles that investigated PCK (Depaepe, Verschaffel, & 

Kelchtermans, 2013) found that all of the studies connected content knowledge and pedagogy. 

The authors found that conceptualizations of PCK fell into two distinct categories. The first 

category approached PCK from a cognitive perspective that had provided empirical evidence for 

a  positive connection between teachers’ PCK and student learning outcomes. The second 

category of studies approached PCK from a situated perspective that provided insight into what 

actually happens in classrooms. In all studies PCK was seen as a form of practical knowledge 

and content knowledge was described as an important and necessary prerequisite. This finding is 

a key indicator that strengthening content knowledge in prospective preservice teachers before 

they begin their teaching methods courses has the potential to support their successful 

development as effective teachers of mathematics. 

Effects on Student Achievement 

https://drive.google.com/open?id=1vU2dDUb7-0PEY6hP2KZtBGaQLlZUzXVi
https://drive.google.com/open?id=1GTY6RM-0HD3DPxoHrTlGdoRwufWKM92U
https://drive.google.com/open?id=1GTY6RM-0HD3DPxoHrTlGdoRwufWKM92U


 
8 

Measuring teacher content knowledge would be meaningless without an understanding of 

how MKT may impact student learning. A study of 115 elementary schools (Hill, Rowan, & 

Ball, 2005) investigated how teachers’ MKT contributes to students’ mathematics achievement. 

Data included student assessments administered in the fall and spring of each academic year. 

Teacher data was gathered with a highly structured self-reported log of the time devoted to 

mathematics instruction, content covered, a survey questionnaire of educational background, 

involvement in professional development, and language arts and mathematics teaching. The 

survey was the source of items included in the content knowledge for teaching mathematics 

measure. The measure was composed of multiple-choice items representing teaching-specific 

mathematical skills. The study found that teachers’ mathematical knowledge for teaching 

positively predicted student gains in mathematics achievement. The authors conclude that 

content-focused professional development and preservice programs will improve student 

achievement. 

Another study investigated the relationship between secondary teachers’ MKT and 

student learning outcomes (Hatisaru & Erbas, 2017) using the framework developed by Hill et al. 

(2008) to analyze two mathematics teachers and their ninth-grade students (n=59) in a vocational 

high school. The teachers were selected as representing strong and weak knowledge of functions. 

Measure of MKT was adapted from items used to measure student’s knowledge of functions and 

teachers’ knowledge of functions. Follow-up interviews were conducted to obtain a more 

detailed picture of knowledge of the function concept. The same instrument was used to test 

student outcomes at the end of a 5 week functions instructional unit. Classroom observations and 

follow-up interviews were conducted to discuss overall reaction to the class and planning for the 

https://drive.google.com/open?id=1r_Ihyula5G9l83kxwRUxfKbYjGdcD0ph
https://drive.google.com/open?id=1r_Ihyula5G9l83kxwRUxfKbYjGdcD0ph
https://drive.google.com/open?id=1_1XaiYeUrPUBJ1mna6Q-nOzpSNmdR414
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next class. The researchers selected key aspects of the MKT that assessed specialized content 

knowledge (SCK), knowledge of content and students (KCS), and knowledge of content and 

teaching (KCT). The authors developed a concept framework for evaluating the knowledge 

domain and used their framework to conduct an qualitative analysis of the data gathered 

throughout the study. The results indicated that SCK was a necessary condition for KCS, and 

both aspects influenced instructional practices and learning outcomes. 

A recent study (Tchoshanov et al., 2017) of 90 late elementary teachers (grades 5-9) and 

their students (N=6,478), looked closely at the components of MKT and the relationship with 

student achievement. Rather than using the construct developed by Hill et al. (2008), the 

connection between MKT and the impact on student performance was studied using an 

instrument that assessed different cognitive types of teacher knowledge. Cognitive types were 

divided into knowledge of facts and procedures, including memorization and basic mathematical 

facts, rules, and algorithms (T1), knowledge of concepts and connections (T2), and knowledge of 

models and generalizations, conjecturing, generalizing, proving theorems (T3). The authors 

considered these types as low, medium, and high level knowledge types respectively. Student 

performance was measured using an end-of-course exam. A correlation found between teachers’ 

content knowledge and student performance with teacher’s overall mastery of content knowledge 

significantly associated with students attaining higher grades in mathematics classes. T1 and T2 

were significantly correlated. T3 was not. Strength in T1 appeared to be necessary for high 

performance at the T2 level. 

In spite of the difficulties of measuring teacher knowledge, across the studies, the 

consistent findings were that knowledge for teaching mathematics is dependent upon a 

https://drive.google.com/open?id=1JoqDczSTqJdhh6jy610W3YTqKR6lBYu2
https://drive.google.com/open?id=1vU2dDUb7-0PEY6hP2KZtBGaQLlZUzXVi
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foundational knowledge of integrated mathematics. Liping Ma’s (1999) book explores the 

disparity between Chinese and American student outcomes, with Chinese students typically 

outscoring U.S. students on international comparisons of mathematics competency. Ma analyzed 

the fundamental mathematics that Chinese and American elementary teachers bring to their 

teaching and found a striking contrast between the nature of the knowledge between teachers in 

the two countries. U.S. teachers tended to be procedurally focused, competent with whole 

numbers, but challenged by more advanced topics such as division of fractions and perimeter and 

area of rectangles. In comparison, she found that Chinese teacher knowledge was “coherent 

while that of the U.S. teachers was clearly fragmented.” (p. 107). Chinese teachers described 

why algorithms worked and when discussing alternative ways to solve problems explained that 

alternate approaches were possible, not because of isolated rules, but because of the underlying 

relationships that connect operations. Conceptual and procedural topics were interwoven and 

provided the groundwork to build further mathematics understanding. Ma identified this type of 

mathematical content knowledge as a profound understanding of fundamental mathematics 

(PUFM). Teachers who possess PUFM are able to conceive of the ideas that are connected to the 

structure of the discipline of mathematics. This is strikingly similar to the T1 and T2 cognitive 

types (Tchoshanov et al., 2017) When challenged to demonstrate why an algorithm works they 

used not only verbal explanations and examples, they also justified their explanations with 

symbolic derivations.  

Ma (1999) states that PUFM “is the mathematical substance of elementary mathematics 

that allows for a coherent understanding of it” (p. 118). Elementary mathematics “means 

providing them with a groundwork on which to build future mathematics learning.” (p. 117). 

https://drive.google.com/open?id=1JoqDczSTqJdhh6jy610W3YTqKR6lBYu2


 
11 

Teachers cannot provide this groundwork unless they themselves have a coherent understanding 

of mathematical practices and constructs. Ma also talks about depth of understanding as 

“connecting it with more conceptually powerful ideas of the subject” (p. 121). If this depth of 

understanding is present then as teachers they will be able to “reveal and represent them in terms 

of teaching and learning” (p. 122). Ma defined four properties of this representation:  

1. Connectedness refers to the connections among mathematical concepts and 

procedures, prevent students’ mathematics knowledge from being fragmented into 

isolated topics. 

2. Multiple perspectives an appreciation of various approaches to a solution leading 

to a flexible understanding. 

3. Basic ideas of the principles of mathematics and use them to guide students in 

real mathematical activity 

4. Longitudinal Coherence is a fundamental understanding of the whole of 

elementary mathematics curriculum freeing teachers to review concepts 

previously encountered and strategically prepare students for subsequent learning. 

While basic ideas form the building blocks of mathematics, the other four properties are 

in essence refinements of coherent connectedness. If this connected understanding is not present 

in prospective preservice teachers, in what way can it be cultivated? Before addressing this issue 

it is necessary to define what connectedness means in mathematics teaching and learning. 

Theoretic Framework 

Procedural and Conceptual Knowledge  
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When Ma (1999) describes the interweaving of conceptual and procedural knowledge she 

refers to procedural knowledge as the specific steps used in solving problems and conceptual 

knowledge as the rationale that supports the procedures and the knowledge of connections to 

related mathematical concepts. This understanding of the differences between procedural and 

conceptual knowledge was defined by Hiebert and Lefevre (1986) in their landmark article to 

provide a useful way for researchers to understand student learning processes. While Ma does 

not reference this framework, her use of the concepts align: especially when considering the 

interplay between the two forms. While Hiebert and Lefevre’s purpose for developing the 

framework was to aide mathematics education research, they acknowledged that the relationship 

between procedural knowledge and conceptual knowledge was not well understood, and that 

often mathematics knowledge may be an inseparable combination of both forms of knowledge. 

In spite of this, they argued that distinguishing types of knowledge would provide a way to 

understand the failure or success of building mathematics understanding.  

Hiebert and Lefevre (1986) define conceptual knowledge as a connected web of 

knowledge: a network of linked relationships that are as important as the discrete elements.  The 

web of knowledge is conceptual only if the learner recognizes the relationships between 

elements.  Conceptual knowledge not only describes the connections between known elements, it 

also describes the connections made between existing knowledge and newly acquired 

knowledge.  The context is created by the network of relationships, allowing the learner the 

freedom to apply existing knowledge to novel problems. 

Procedural knowledge as described by Hiebert and Lefevre (1986) is the use of the 

formal language and the symbolic representation system of mathematics.  Algorithms or rules are 
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used to complete tasks with an awareness of only surface features.  The knowledge of the 

meaning of the processes is not accessed or necessary for successful completion of tasks. 

Step-by-step instructions prescribe how to complete tasks.  These tasks may then be sequenced 

into superprocedures that incorporate lower level subprocedures. Procedural knowledge allows 

students to solve complex superprocedures as a chain of prescriptions without knowledge of the 

meaning of the task.  

Over time, referencing Hiebert and Lefevre’s framework (1986) has become a kind of 

shorthand for the understanding that procedural knowledge essentially amounts to meaningless 

number crunching, and that conceptual knowledge is application to the real world demonstrated 

by the conversion of mathematical forms into plain language. There has been both a tacit and a 

sometimes overt belief that conceptual knowledge defined in this way is a higher form of 

understanding and a more valid metric to be used when assessing mathematics knowledge than 

demonstrated procedural skill (Star, 2005). This simplistic application of the framework does not 

take into account the intersection and influence that one type of knowledge may have on the 

other. In three studies that used Hiebert and Lefevre’s framework to compare procedural 

knowledge to conceptual knowledge in learners (Cramer, Post, & del Mas, 2002; Rayner, 

Pitsolantis, & Osana, 2009; Cheng-Yao, 2010) the ability of the participants to solve equations 

was used only to assess procedural knowledge. Conceptual knowledge was measured by the 

participant’s ability to create word problems that demonstrated an understanding of the concept 

being investigated. There was no provision to gather data on participants' conceptual 

understanding that may have been embedded in their procedural work. When conceptual 

understanding is only tested by asking participants to create scenarios that would embody given 
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mathematical expressions, conceptual theoretical mathematical understanding that may be 

present but not applicable in a real-world context is not accessed or assessed. The 

oversimplification of mathematics knowledge into such narrowly defined constructs stifles 

exploration of the connected mathematics that Ma (1999) observed and the complex interplay 

that Hiebert and Lefevre acknowledged. 

Star (2005) addressed the limitations that the bifurcation of mathematical knowledge into 

conceptual and procedural types had imposed on mathematics education research and the barriers 

that the simplistic model created to the development of a meaningful understanding of the 

complexity of the relationship between the two concepts. He argued that contrary to the common 

perception of procedural knowledge as superficial and rote and the perception that conceptual 

knowledge is knowledge that is known deeply, that both types of knowledge can be either 

superficial or deep or anything in between.  He described this depth of knowledge as knowledge 

quality. In discussing deep procedural knowledge he describes environments where procedures 

are utilized with a knowledge of the justification for use and the understanding of the impact the 

environment or situation may have on selection of procedure type or method.  

These rich relationships echo the connected mathematics of Ma (1999) and the web of 

knowledge described by Hiebert and Lefevre (1986) as conceptual knowledge. Of course the 

semantics begin to cause some difficulty, but I believe that Star’s (2005) article is, rather than a 

refutation of Hiebert and Lefevre (1986), a reassertion of the spirit of the framework as it was 

originally developed. Hiebert and Lefevre do not propose at any point that language embodies a 

higher form of knowledge or equate language with conceptual knowledge. Looking at procedural 
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knowledge without reference to conceptual acknowledges the importance of procedural 

knowledge as valuable in and of itself (Star, 2005).  

Star (2005) argues that deep procedural knowledge manifests as procedural flexibility. In 

a qualitative study that investigated the development of procedural flexibility by experts, 

procedural flexibility was defined as the knowledge of multiple procedures relevant to solving a 

particular task, and the ability to select the most appropriate among these to complete a task (Star 

& Newton, 2009). The participants included two mathematicians, two mathematics educators, 

two secondary mathematics teachers, and two engineers. They were given a 55-item test of 

symbolic mathematics problems that were designed to ensure opportunities to demonstrate 

flexibility. Semi-structured interviews were conducted following the test that allowed the experts 

to explain the strategies they had used and their perceptions of alternative strategies that they 

were aware of. The researchers found that the experts demonstrated knowledge of and use of 

multiple strategies and generally expressed a preference for the most efficient strategies, those 

with the least number of operations or least arithmetic complexity, for a given problem. When 

the experts failed to use the optimal strategy when problems could be solved using 

well-practiced, automatized approaches. The researchers found that the experts believed that 

flexibility is best developed implicitly and individually by the repeated problem solving 

experiences of learners.  

To investigate what types of experiences would prompt the development of procedural 

flexibility, a recent study (Maciejewski & Star, 2016) examined the effects of a teaching 

intervention designed to promote flexibility in procedural knowledge. The researchers sought to 

determine not only if procedural flexibility could be developed, but also if it resembled 

https://drive.google.com/open?id=1AdbApG7Q1DYomfC6___TWKTJdZFVcDzb
https://drive.google.com/open?id=1AdbApG7Q1DYomfC6___TWKTJdZFVcDzb
https://drive.google.com/open?id=0B1GZQqZxXry8Q0JYd3N5TEwyUjg
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expert-like procedural performance. The design was quasi-experimental pretest/post test.  Two 

sections of an introductory calculus course for first year college students, taught by the same 

instructor, were selected for the experimental study. A pretest on differentiation was given. 

After receiving a lesson that contained a traditional sequence of instruction on procedures, the 

control section was given a typical worksheet for homework.  The treatment section was given a 

worksheet that specified two approaches for solving each assigned problem and were asked to 

describe which method they prefered.  The homework assignment was followed by a 

readministration of the pretest as a post test. An analysis of the data found that here were no 

significant differences in the sections’ score averages; both groups demonstrated higher 

achievement on the posttest.  The treatment group used a greater variety of strategies than the 

control group and moved closer to expert-like performance. The authors concluded that it is 

possible to use an instructional task to support the development of undergraduate students’ 

flexible use of procedures.  Because the control group did not demonstrate flexibility after 

practice, the authors determined that an activity that prompted critical reflection by presenting 

tasks that prompt students to resolve questions in different ways and allow for the comparison of 

different solutions may support the development of deep procedural knowledge.  

Procedural Flexibility and Performance 

 The lack of empirical research on procedural flexibility in prospective preservice 

teachers necessitates looking at the relationship between student flexibility in procedural 

problem solving and mathematics performance in another population. A qualitative study (Lamb 

et al., 2016) used clinical interviews to investigate the effect of procedural flexibility in students 

grades 2, 4, 7, and 11.  The researchers sought to determine the degree in which flexible ways of 
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reasoning influenced performance on integer problems.  The wide grade span was chosen to 

cover student learning experiences from those who had not yet received school-based integer 

instruction to those who were enrolled in precalculus or calculus courses and therefore deemed to 

be successful high school mathematics students. Individual clinical interviews were conducted 

and videotaped at the students’ school sites.  The interviews were standardized and all students 

were asked to complete the same 25 open number sentences.  Interviews were coded both for 

underlying reasoning and for correctness.  Five categories were used to identify ways of 

reasoning: order-based, analogy-based, computational, formal, and developmental.  Flexibility 

was measured by the variety of methods students used to solve tasks.  Proficiency with a 

particular form of reasoning was demonstrated when a student used it three or more times.  The 

number of ways that students used forms of reasoning that they were proficient in was the 

measure of flexibility.  

Case studies were performed on three 7th grade students who exemplified the 

relationship between flexibility and accuracy.  The first student chosen completed 32% of the 

open number sentences correctly.  The second student completed 64% of the problems correctly. 

The third student completed 100% of the problems correctly. The researchers had found that the 

seventh grade students had had the greatest spread in flexibility.  Eighty-five percent of 11th 

graders had used 3 or 4 methods.  Flexibility scores for both groups had correlated positively 

with performance.  This result also held across the case studies.  The first and second cases used 

one type of reasoning almost exclusively which limited their options for solving problems and 

negatively impacted their success.  The third case, who had completed every open number 
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sentence correctly, flexibly used a wide range of strategies on the problems and appeared to 

choose strategies that corresponded with the underlying structure of the open number sentence. 

The authors concluded that students who rely on a single way of reasoning may be impeded in 

their success because of their limited flexibility and that multiple ways of reasoning promotes 

successful performance.  For every participant group, the correlation between flexibility and 

accuracy held; more flexible students were more successful.  

Procedural Flexibility and Content Knowledge for Teaching 

The sum total of the literature reviewed provides a substantial justification for the 

development of an intervention that could conceivably strengthen the procedural flexibility of 

prospective preservice teachers. The presence of procedural flexibility is an indicator of strategic 

thinking in mathematics problem solving (Lamb et al., 2016), and appears to have been 

strengthened when students were presented with multiple ways to approach problems 

(Maciejewski & Star, 2016). Star (2005) identifies procedural flexibility as an exemplar of deep 

procedural knowledge that “is associated with comprehension, flexibility, and critical judgement 

and that is distinct from (but possibly related to) knowledge of concepts” (p. 408). An 

investigation of the procedural flexibility of experts (Star & Newton, 2009) found that they 

solved problems with a combination of automized skill and a thorough understanding of the 

underlying concepts involved. This combination of skill and the ability to connect with more 

powerful concepts, core to Ma’s (1999) PUFM, was present in effective teachers (Tchoshanov et 

al., 2017), and was identified as a necessary prerequisite to the development of pedagogical skill 

(Depaepe et al., 2013). 

Technology Based Learning Interventions 
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If the primary strength of undergraduate mathematics knowledge is in procedural 

knowledge, then it makes sense to use students’ existing procedural knowledge as a tool to build 

conceptual understanding. Rather than perceiving the shallow procedural knowledge of 

undergraduate students as a liability, perhaps their existing knowledge can function as the 

starting point, the building blocks, that can be used to create deep procedural knowledge by 

providing the opportunity for students to build the net of knowledge that interconnects the 

disparate parts of their existing mathematics understanding. Mobile technology platforms are a 

natural environment to provide the constant practice that expert mathematicians believed was 

necessary to their skill acquisition (Star & Newton, 2009).  And software for mobile devices can 

be designed to deliver the type sequenced instruction that prompted procedural flexibility 

(Maciejewski & Star, 2016). 

It is a logical choice employ the use of mobile technologies, specifically mobile phones, 

to support the mathematical content learning of prospective preservice elementary teachers. This 

generation of students is highly likely to have the technology with them at all times, and they 

have shown an affinity for using mobile phones for learning on their own (Chen, Seilhamer, 

Bennett & Bauer, 2015). We expect our elementary school teachers to be proficient in using 

technology with their students (NCTM, 2014; National Governors Association Center for Best 

Practices & Council of Chief State School Officers, 2010), even though it is unlikely that they 

have had experience using technology for learning in their own coursework (Chen, Seilhamer, 

Bennett & Bauer, 2015). Increasingly, technology use means mobile devices (Johnson, Adams, 

Becker, Estrada, Freeman, & Hall, 2016). Few university instructors design exercises that use 

mobile technology, and more than half bar mobile devices from the classroom (Dahlstrom & 

https://drive.google.com/open?id=1AdbApG7Q1DYomfC6___TWKTJdZFVcDzb
https://drive.google.com/open?id=0B1GZQqZxXry8Q0JYd3N5TEwyUjg
https://er.educause.edu/articles/2015/6/students-mobile-learning-practices-in-higher-education-a-multiyear-study
https://er.educause.edu/articles/2015/6/students-mobile-learning-practices-in-higher-education-a-multiyear-study
https://www.educause.edu/ir/library/pdf/ss14/ERS1406.pdf
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Bichsel, 2014). There is evidence that this generation of students, who are often described as 

“digital natives,” struggle to successfully integrate mobile technologies into their classrooms 

once they enter practice, especially when teaching mathematics (Orlando & Attard, 2016). While 

there are sure to be many factors that contribute to the struggle, it is likely that lack of experience 

using mobile technologies in their own coursework is a contributing factor. 

A 2014 university-wide survey (Chen et al., 2015) of undergraduate (n=1,075) and 

graduate (n=106) students found that 95 percent owned a smartphone device. Students used the 

devices to look up lecture topics, discipline-specific apps, and course textbooks. Students 

perceptions of the benefits of using mobile devices included increased knowledge in their fields 

of study, increase quality of work, and greater motivation complete coursework. Sixty-six 

percent of students reported using a mobile app for learning on their own at least once a week. 

More than half of the students indicated that they would prefer that instructors not use mobile 

apps because of lack of technical support and training. There is little research on the 

effectiveness of learning with mobile phones, especially in this population. This may be due to 

the relative recent near universal adoption of these device by university students, the lack of 

sufficient instructor training (Chen et al., 2015), or the poor quality of existing mathematical 

apps (Larkin, 2015).  

Assessing the quality of mathematics educational apps 

Educational mathematics apps are heavily represented in both the App Store (Apple) and 

the Google Play Store (Android): the two largest marketplaces for apps and the most likely 

sources for undergraduates who use apps. A review of the mathematics apps available reveals 

myriad intensely colored child-like games-based apps and sombre looking apps designed for 

https://www.educause.edu/ir/library/pdf/ss14/ERS1406.pdf
https://er.educause.edu/articles/2015/6/students-mobile-learning-practices-in-higher-education-a-multiyear-study
https://er.educause.edu/articles/2015/6/students-mobile-learning-practices-in-higher-education-a-multiyear-study
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calculus practice. There appear to be few apps designed for adults to use to strength fundamental 

mathematics skills. Of courses, how an app appears in an app store does not given an indication 

of the software’s suitability or quality. There are ongoing efforts to create a means to assess the 

usefulness of apps for research and for use (Lee & Cherner, 2015), but a framework or other 

construct for analysis has not yet emerged that is in broad use.  

There are indications that there is no consensus among preservice elementary teachers of 

what constitutes a useful mathematics educational app. A study (Handal, Campbell, Cavanagh, & 

Petocz, 2016) of 373 elementary education students from three universities sought to establish 

the construct validity of an instrument designed to assess the perceived usefulness of educational 

apps in mathematics education by preservice teachers. Participants were asked to examine an app 

on an iPad that had been determined by the researchers to be pedagogically and technically 

sound and record their responses on the developed instrument. Quantitative analysis of the 

responses found that construct validity could not be established because responses had no 

discernible patterns. The authors argued that this result was most likely due to students’ lack of 

understanding of the appropriate role that technology should play in learning. I think that this is 

not only a reflection of a lack of understanding how technology will work in the lives of their 

future students, but also a reflection of a lack of understanding of how technology may enrich 

their own learning experiences.  

Affordances of Mobile Technology 

The ubiquitous presence of mobile phones in students’ lives is in itself a compelling 

reason to develop an app based intervention to support the mathematics content learning of 

prospective preservice elementary teachers. Students are not likely to use a resource that is not 

https://drive.google.com/open?id=1PX2tLfBJdotDNaTSQkns2S4jSwVBIc4E
https://drive.google.com/open?id=1PX2tLfBJdotDNaTSQkns2S4jSwVBIc4E


 
22 

easily accessible. In addition to the ubiquitous nature of the devices, digital technology generally 

and mobile devices specifically provide multiple affordances that can be leveraged in the 

development of an intervention. The lack of a mobile app that is designed to develop an 

integrated concept of mathematics topics that will support procedural flexibility in undergraduate 

students presents an opportunity to fill the void.  

In mathematics education there is a history of developing software that is designed to 

bring the complex concepts of advanced mathematics to users who would normally not engage in 

mathematics at that level. In 1994, Kaput and his team began the development of SimCalc: 

Software for personal computers that was designed to bring the calculus concept of rates of 

change and advanced algebra concepts to children (Hegedus & Roschelle, 2013). The project 

would continue for more than 20 years and receive NSF funding that exceeded 16 million dollars 

(National Science Foundation, 1993, 1997, 2000a, 2000b, 2002, 2004a, 2004b). Kaput wrote that 

“SimCalc is a technology and curriculum research and development project intended to 

democratize access to the basic ideas underlying calculus beginning in the early grades and 

extending to AP calculus and beyond,” (1999, p. 155). While the software is primarily known in 

the mathematics educational research community for its multiple representations of concepts of 

change, I am more interested in the aspect of the project related to the democratization of 

advanced mathematics: the use of the affordances of technology to design an environment that 

invited students to explore mathematical constructs that were considered beyond their grasp.  

Ma (1999) found that the Chinese teachers possessed a connected understanding of 

mathematics that informed their pedagogical approaches. This connected understanding of 

mathematics is reflected in Kaput’s belief that algebra could become an engine of mathematical 
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power for students who were struggling if they were introduced to the concepts as a web of 

knowledge and skill. He argued that if students were introduced early to the practice of forming 

patterns and generalizing quantitative reasoning that they then would build deep and varied 

connections with all of mathematics (Kaput, 1998). The affordances of technology can be used 

as a tool to expand students’ prior knowledge to represent both familiar and unfamiliar concepts 

in close approximation and to sequence concepts with increasing complexity (Kaput, 2009; 

Roschelle & Kaput, 1996). An additional affordance that technology environments can provide is 

the personalization of the users experience. Clinical interviews (Kaput, 1999) with users early in 

development found that they took ownership of the computer environment when they were given 

the ability to personalize the experience by means as simple as changing colors and assigning 

names.  

College students expressed aversion to using software in coursework in part because of a 

lack of available effective training and support (Chen et al., 2015). Application software for 

mobile phones should be designed to be accessed anywhere at any time. The challenge then is to 

design software that provides training and support for the user as part of its design. Though 

SimCalc was developed as a tool to be used in a classroom setting with an instructor, research on 

its effectiveness provided some intriguing results that may offer insight into dealing with this 

challenge. Throughout its development, SimCalc was designed to provide onramps to complex 

mathematical concepts to students at all levels of mathematics development from early 

elementary through high school. Researchers found (Hegedus & Kaput, 2003) that all students 

performed better using the software relative to their prior knowledge. As the research on 

SimCalc was scaling up (National Science Foundation, 2004a), a pilot study (Tatar et al., 2008) 

https://drive.google.com/open?id=0B1GZQqZxXry8bzIxMnlKdXZJa28
https://er.educause.edu/articles/2015/6/students-mobile-learning-practices-in-higher-education-a-multiyear-study


 
24 

of the use of SimCalc in the classroom was conducted with 21 seventh-grade mathematics 

teachers and their students using a pretest-posttest randomized experiment design. Participants 

came from multiple districts with widely varying socio-economic conditions. Control teachers 

received no training on the software. Though both teachers and students in the treatment 

condition had gains were higher than those in the control group, all participants had significant 

gains in mathematics knowledge. This held across variations in teacher knowledge, experience, 

and teaching contexts. Of course, there are enormous limitations to generalizing the use of 

technology that is classroom-based to an intervention that will be used without the simultaneous 

support of a classroom or an instructor. Yet, it is reasonable to assume that connected 

mathematics that underlies the design of the software is the constant behind the positive results 

of these studies. The advancements in mobile technology in the intervening years presents an 

irresistible opportunity to advance this work into the context that undergraduate students inhabit. 

Embodied cognition and mathematics 

Swipe movements are now second nature when interacting with mobile phones. This 

tactile interaction with the device has interesting implications for mathematics learning. Long 

before the advent of the smartphone, Kaput (1999) identified the potential power that movement 

and gesture in digital environments could have on learners. He argued that images that responded 

to users movements would deepen their understanding of the underlying mathematics. Later 

(Kaput, 2009), as he was exploring the use of SimCalc on handheld devices, he argued that 

gesture could be used to connect students to purely symbolic representations of mathematics. 

Though there were glimpses of the power that digital environments could have when users 

displayed ownership of their online work, Kaput could not have imagined the strength of the 
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immersive effect that our mobile devices can now have on us, subsuming us into digital realities 

that have the immediacy and salience of the physical world around us. In the early 20th Century 

Husserl (2005) anticipated this phenomenon as the concept of pure possibility: the experience of 

imagined objects having the same effect on us as concrete objects. His ideas were later supported 

by a landmark neuroscience study (Gallese & Lakoff, 2005) that found evidence that conceptual 

knowledge is mapped within our sensory-motor system, and that this characterizes the way that 

we function in the world. The same structure that moves us and gives us structural perceptions 

also structures abstract thought. This form of embodied perception is described as embodied 

cognition.  

Mathematical imagination is bound by the logical necessity inherent in mathematics and 

therefore does not have the complete conceptual freedom that pure possibility allows and, as 

Kaput (2009) had conjectured, movement can connect the figural symbolic entities of 

mathematics to the physical world. A study (Nemirovsky & Ferrara, 2009) of 21 high school 

students used body motion with technology to integrate mathematics learning to explore the 

possibility that mathematical propositions can reside in the body. The teaching experiment was 

designed for the learning of trigonometry concepts involving body motion. Students used a laser 

pointer to trace angles as they discussed types of triangles. In the follow-up discussion students 

displayed complex ideas both verbally and with hand gestures to illustrate their understanding. A 

further evaluation (Hutto, Kirchhoff, & Abrahamson, 2015) of an earlier study (Reinholz, 

Trninic, Howison & Abrahamson, 2010) that compared the conceptual understanding of 20 grade 

4-6 students who were trained to move their arms and hands in a way that would enact 

proportional relationships. The treatment group significantly outperformed the control group on 
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measures of conceptual understanding of proportional reasoning. The question of whether 

embodied cognition extends to the affordance of gesture control that tablets provide was 

explored in the a study of 61 8-11 year olds (Agostinho et al., 2015). The control group was 

instructed to look at information that was highlighted and circled on an iPad app. The treatment 

group was instructed to trace the same information on an iPad app using their index finger. The 

treatment group achieved a higher performance result on a test of recall than participants who 

studied the material without tracing. The authors conclude that gesturing has a positive impact on 

fundamental educationally relevant cognitive functions.  

Research 

There is every indication that swipe gestures have the potential to support mathematics 

understanding in users, but there remains a need for further research into what role embodied 

cognition plays in learning on the small screens of smartphones in undergraduate students. 

Frankly there is a need for research into all aspects of mobile technology and learning. Though 

the use of mobile devices has grown rapidly, reaching near saturation levels in undergraduates, 

research into the impact of mobile devices on learning has not kept pace. At this early stage of 

the development of research into the use and effect of mobile devices, focus is mostly on the 

potential of mobile devices for teaching and learning mathematics, affective studies on the use of 

mobile devices, and the use of mobile devices in mathematics teacher education (Borba et al., 

2017; Larkin & Calder, 2016).  I found in the current published studies on mobile devices and 

teacher education a proposal to use smartphones to record videos and share understanding in 

teacher education sessions (Yerushalmy & Botzer, 2011), and proposals for ways to increase 

prospective teacher engagement in learning with mobile devices (Holden, 2016; Schuck, 2016); 

https://drive.google.com/open?id=1xj4uF6AB0vXh4219ZFCKAiY_xiDNhboz
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in line with Bourba’s (2017) findings that research is currently focused on potential uses rather 

than empirical outcomes. 

Implications for Design and Development 

The fact that there is so little prior empirical research into the effectiveness of mobile 

phone applications in mathematics learning necessitates the need to look at related research on 

learning and technology. While Kaput functioned in a vastly different world, and designed for 

devices bound in place with use mediated by instructors, his successful approaches to how and 

what students can learn in a digital environment provide a solid place to begin in designing an 

intervention. In spite of the relatively small screen size of mobile phones, the nature of the 

interaction and the quality of the visuals are exponentially more immediate than those that were 

available to Kaput on personal computers. Accessibility to technology is not the concern that it 

was when SimCalc was being developed, but there are new issues that must be addressed. 

Compatibility across the major platforms (Apple, Android, and web-based design), security of 

user data, availability of development resources are just the most obvious challenges among 

others that are sure to surface as development progresses. Design based research methodology 

allows a way forward by providing a framework for both design and empirical research 

throughout the development of an intervention. Interestingly the decades-long process that Kaput 

used, reflected in the NSF Grants, fits the frameworks for design based research currently in use. 

Design Based Research 

The presence of a learning application on a users mobile device has a potential impact on 

the users’ perception of the device, user experience, the content, and the environment. Within 

this complex setting, design based research provides a model for rigorous cycles of applied 
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research to “effect change in a learning context through the building of a design intervention 

through which we uncover pedagogical principles that may be applicable and researchable in 

similar situations” (Bannan, Cook, & Pachler, 2015, p. 3). As a qualitative method, design based 

research allows for the uncovering of analytic generalizations from the specifics of the 

phenomenon being investigated. 

Figure 2 (as cited in McKenney & Reeves, 2012, p. 16) illustrates the recursive nature of 

the design-based research process. Each loop represents a cycle of research with each cycle 

informing the direction and design of each succeeding cycle.  

 

 

Figure 2. (McKenney & Reeves, 2012, p. 16) 

The McKenney and Reeves (2012) framework describes the workflow of a specific 

research study and provides a clear organizing framework for the progression of the development 

https://drive.google.com/open?id=13WHCNJLmITERHI0-kmeV3t3pWdNSFEJw
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of a design based research study. While the looping form illustrates individual recursive 

design/research cycles, the direction of progress is continuously forward. Bannan’s ILD 

Framework (Figure 3) shares the conceptual organization of the McKenney & Reeves with the 

Informed Exploration phase covering the needs and content analysis; the Enactment phase 

incorporating design, development, and formative evaluation; and the Enactment: Local Impact 

phase aligning with semi-summative evaluation. Bannan’s Evaluation: Broader Impact phase 

moves beyond the project development process covered by the McKenney and Reeves 

framework and propels the project into real-world. In contrast to the McKenney and Reeves 

framework, the ILD Framework provides multiple avenues of exploration and research that will 

allow the trajectory of the project to change as more knowledge and experience is gained through 

the recursive research process. 

 

  

Figure 3. ILD Framework  (Bannan-Ritland, 2003, p. 22) 

 

Using the McKenney and Reeves model to sequence workflow will allow for forward 

movement in development while simultaneously conducting research at every iteration. The 

integrative learning design (ILD) Framework for mobile learning development (Bannan et al., 

https://drive.google.com/open?id=1jMeg__zGIeXM5hUiewuPHyexAbDT-8wo
https://drive.google.com/open?id=13WHCNJLmITERHI0-kmeV3t3pWdNSFEJw
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2015) presents guiding questions and applicable research methods for each of the phases of 

development and allows the design and research cycles to determine the trajectory of the 

research. Using this construct, the McKenney and Reeves framework can guide the sequence of 

the research process, and the ILDF can define the theoretical concepts being investigated and the 

choice of research methodologies that will be used within each cycle of research. Because of the 

qualitative nature of design based research and the way in which prior cycles influence the 

trajectory of subsequent cycles, the research design has the flexibility to respond to the expected 

and the unforeseen challenges on developing an mobile application. 

Reflection 

No matter how well topics and contents are sequenced, it would be foolhardy to imagine 

that the complexity of learning mathematics can be reduced to the capabilities of a single mobile 

application. Still, leveraging the affordances that technology provides to sequence and present 

mass amounts of information and skill practice presents the possibility of developing a powerful 

tool to increase mathematical knowledge and understanding.  In spite of the fact that mobile 

devices have become ubiquitous in our world, research on mobile technology’s impact on 

prospective preservice teachers is in its infancy. There is a need for greater exploration of the 

impact of technologies that allow user autonomy in choosing where, when, and what learning 

will occur. Though these broad questions certainly cannot be answered in the development of a 

single mobile application, conducting this study will contribute to the the body of knowledge in 

this domain. 
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